

One of the major new features in the current release of Mascot is support for quantitation. This is still work in progress. Our goal is to support all of the popular methodologies.

Protocol	Description	Examples
reporter	Specific reporter ion peaks within a single MS/MS spectrum	iTRAQ, ExacTag, TMT
precursor	Extracted ion chromatograms for related precursors within a single dataset	ICAT, SILAC, ¹⁸ O, ICPL, AQUA, Metabolic
multiplex (Neubert et. al.)	Pairs of sequence ion fragment peaks within a single MS/MS spectrum	SILAC, ¹⁸ O
replicate	Extracted ion chromatograms for identical precursors across two or more datasets	Label-free
empai (Ishihama et. al.)	Protein coverage in a database search result	
average	Extracted ion chromatograms for selected peptides per protein within a single dataset	

To make this task manageable, we have classified the various approaches into a limited number of protocols. So far, we have identified 6 distinct protocols. If anyone can see a method that doesn't fit to one of these, we'd be very grateful for details.

Reporter is quantitation based on the relative intensities of fragment peaks at fixed m/z values within an MS/MS spectrum. For example, iTRAQ or Tandem Mass Tags

Precursor is quantitation based on the relative intensities of extracted ion chromatograms (XICs) for precursors within a single data set. This is by far the most widely used approach, which can be used with any chemistry that creates a precursor mass shift. For example, 180, AQUA, ICAT, ICPL, Metabolic, SILAC, etc., etc.

Multiplex is quantitation based on the relative intensities of sequence ion fragment peaks within an MS/MS spectrum. This is a novel approach, which can be used with any chemistry that labels one peptide terminus, creating a small mass shift, such as 18O or SILAC under certain conditions.

Replicate is label free quantitation based on the relative intensities of extracted ion chromatograms (XICs) for precursors in multiple data sets aligned using mass and elution time.

emPAI is quantitation for the proteins in a mixture based on protein coverage by the peptide matches in a database search result.

Average is quantitation for the proteins in a mixture based on the application of a rule to the intensities of extracted ion chromatograms (XICs) for the peptide matches in a database search result. For example, the average intensity for the three strongest peptide matches per protein

The rows with a blue background are the protocols that are fully implemented in Mascot 2.2

The common factor for these protocols is that all of the information required for quantitation is contained in the peak list.

The other three methods require additional information from the raw data file, either because it is necessary to integrate the elution profile of each peptide or because information is required for multiple peaks in the survey scan. These methods require that the raw data files are processed using Mascot Distiller.

For methods that require additional information from the raw data file, the workflow looks like this. The raw data file is processed in Distiller and the search submitted to Mascot. When the search is complete, the results are returned to Distiller. The quantitation report can then be generated in Mascot Distiller, which has access to both the Mascot search results and the raw data.

The Quantitation Toolbox for Distiller is still under development. We will try to get it released as soon as we can.

Let me emphasise that the changes to the Mascot search engine are complete and released.

The set of quantitation methods is defined in a new XML configuration file, called quantitation.xml. As with other configuration files, this file lives on the Mascot Server and is downloaded by Mascot Distiller and other clients as required.

The introduction of quantitation has required changes in the way that modifications are handled. Mascot now takes its modification definitions direct from an XML representation of the Unimod database.

One factor that forced this change was the need to support metabolic labelling, in which the isotopic label is present throughout the peptide backbone. This requires residues and modifications to be defined and manipulated as elemental compositions.

We have also introduced exclusive modifications, which can be thought of as a choice of fixed modifications. In many quantitation experiments, separate samples are derivatised then pooled. Thus, a given peptide may carry one or the other set of modifications, but never a mixture of both. Some people use the term "binary" for this type of specificity. We prefer exclusive because binary implies only two possibilities. The real importance of this is that it keeps the search space small, and avoids the 'combinatorial explosion' that can happen with too many variable modifications

	Matrix Science - Mascot - MS/MS lons Search - Microsoft Internet Explorer	
	Ele Edit Yjew Fgyvorites Iools Help	AT
	🚱 Back + 🐑 - 🖹 🖉 🎧 🔎 Search 🤺 Favorites 🚱 🔂 - چ 🧖 - Powerr	arks 👫 👍 %
Quantitation	Address a http://www.matrixscience.com/cgi/search_form.pl?FORMVER=28SEARCH=MIS	✓ → ∞
Quantitation	{MATRIX} {Science} Home: what's new i mascot i help i products i support i training i contact	arch Go
	Mascot > MS/MS Ions Search	
Charles I that the	MASCOT MS/MS Ions Search	
Simplicity	Your name Email	
forusor	Search title	
Tor user	Database SwissProt	
	Enzyme Trypsin Allow up to 1 missed deavages	
	Fixed Acetyl (K)	~
	modifications Acetyl (N-term) Acetyl (Protein N-term) Amidated (C-term) Amidated (C-term) Amidated (Crotein C-term))
	Quantitation ITRAO 4blex	
	Peptide tol. ± 1.2 Da 💌 # 13C 0 💌 🗟 MS/MS tol. ± 0.6 Da 💌	
	Peptide charge 1+ Monoisotopic O Average O	
	Data format Mascot generic Y Precursor m/2	
	Instrument Default	
	Decoy 🗌 Report top AUTO 🛩 hits	
	Start Search Reset Form	
	Copyright © 2006 Matrix Science Ltd. All Rights Reserved.	<u>~</u>
		Internet
MASCOT : Quantitation	© 2007 Matrix Science	MATRIX (CIENCE)

We wanted to keep the user interface simple. Quantitation adds a huge number of choices and parameters, but there is no point in exposing all of these in the search form.

The approach we have chosen is encapsulate these choices and parameters into named quantitation methods. This means that the search form has just a single new control, which replaces the old ICAT checkbox.

Methods that have [MD] at the end are the ones that require Mascot Distiller

The configuration file that encapsulates the choices and parameters for each quantitation method is called quantitation.xml. This is an XML file, and there is a browser based editor for modifying methods and creating new ones. quantitation.xml lives on the Mascot server and is read by both the search engine and Mascot Distiller

Ene Eak New Favorites Tools Help			: 🔿	:				
🌀 Back 🔹 🐑 🖌 📓 🏠 🔎 S	Search 🌟 Favorites	😌 😂 😂	•	Powermarks 🕅 🖌	* *			
Address 🕘 http://t41-jsc/mascot/x-cgi/ms-config.exe	?u=1179506282&QUANT_	SHOW=1					✓	Go
Mascot Config	juration: Qua	antitation Mo	ethods					
Name	ulous	Р	rotocol					
None		n	JII					
iTRAQ 4plex		re	porter	Сору	Delete	Print		
ITRAQ Aplex		re	porter	Copy	Delete	Print		
180 c ected multiple	ex	m	ultiplex	Copy	Delete	Print		
SILAC K+6 R+6 multip	lex	m	ultiplex	Copy	Delete	Print		
TMT 6plex		re	porter	Copy	Delete	Print		
ICAT ABI Cleavable [M	ID]	pi	recursor	Copy	Delete	Print		
ICPL duplex pre-diges	st [MD]	pi	recursor	Copy	Delete	Print		
ICPL duplex post-dige	est [MD]	p	recursor	Copy	Delete	Print		
SILAC K+6 R+10 [MD]		p	recursor	Сору	Delete	Print		
180 corrected [MD]		p	recursor	Copy	Delete	Print		
15N Metabolic [MD]		p	recursor	Copy	Delete	Print		
New quantitatio	in method	Main menu						
Applied Biosystems iTF	RAQ(TM) 8-plex reag	ent				^		
						¥		
								_
	6282						S Local intranet	
http://t41-jsc/mascot/x-cgi/ms-config.exe?u=117950								-
http://t41-jsc/mascot/x-cgi/ms-config.exe?u=117950								

The new, browser-based Configuration Editor, provides an interface to all the Mascot configuration files. In the case of quantitation, you can edit an existing method or make a copy of it as the basis for a new method

Eile Edit View	avorites Iools Help		//
Back -	- 🙀 🛃 🚫 Search 📌 Favorites 🚱 😪 - 🔈	Powermarks 🦝 🔺 %	
: Address 🎒 http://t4	-isc/mascot/x-coi/ms-config.exe2u=1179506282		V 🔁 Go
	Edit Quantitation Method:ICPL duple	x post-digest [MD]	
	Late Quandiation Heatourion L'aupie	x post algest [IID]	
	Name		
	Name ICPL duplex post-digest [MD] Description Serva I	CPL(TM) post-digest, so all N-terms are lab	
	Method Protocol Component Report Ratio Integratio	n Quality Outliers Normalisation	
	Component		
	Components: light 💌 New 🕻	Copy Delete	
	Property light heavy b	Action	
	Component light		
	Modification groups Exclusive group 1 Delete	Add Modification Group	
	Corrections	Add servertion	
		Add correction	
	Save changes Cancel		
	Heln Window		
			~
🙋 Done			Local intranet

For each method, a tabbed dialog is used to navigate between property pages. In many cases, the property pages correspond to XML elements, but sometimes elements have been combined onto a single page or split across multiple pages so as to give a balanced layout.

Here, we can see a duplex ICPL method. The unlabelled and labelled components have been called heavy and light, but you are free to choose your own names so as to make the final report as clear as possible.

If we choose the heavy component, then click on the Modification group link

; ngaross 🥌 http://	caraled ingerodix-contex-	2 1 B B B B B B B B B B B B B B B B B B			
	Edit Own	ntitation Mathed TCD		[MD]	2 60
	Edit Qua	ntitation Method:ICPL	auplex post-algest	[MD]	
	Modificatio	on group 'Exclusive group	1'		
	Property	Value		Action	
	Name				
	Mode	exclusive 💌			
	Mod-cation	ICPL:13C(6) (K)	Delete		
		ICPL:13C(6) (N-term)	Y Delete	Add modification	
	Unmodified			Add unmodified	
	Local definitio	ins		Add local definition	
			OK Cancel		
	fixed=Quantit variable=Non exclusive=A g	:ative modification -quantitative modification jiven peptide may carry one or the (other set of modifications, but ne	ever a mixture of both	

We see that the heavy component corresponds to these two modifications. In this particular method, the sample has been labelled after digestion, so the amino terminus modification is found on every peptide. As you can see from the buttons on the right, a component can be defined in terms of modified or unmodified residues or termini. A local definition is a special modification defined within the quantitation method.

Ġ Back 🔹 🕥 -	👔 🙆 🏠 🔎 Search 🤺 Favorites 🤣 😥 - 💺 😨 - 🛛 Powermarks 🕅 🔺 %								
Address 🕘 http://www.n	atrixscience.com/help/quant_statistics_help.html	💌 🔁 Ge							
(MATDIN)									
SCIENCE	HOME I WHAT'S NEW I MASCOT I HELP I PRODUCTS I SUPPORT I TRAINING I CONTACT	Go							
Help > Ouantit	ation > Statistical procedures								
	Quantitation: Statistical procedures								
	Usually, identification and quantitation are performed at the peptide level. The Mascot result report assigns the peptide								
On this page	matches to protein hits, and the ratios for individual peptide matches are combined to determine ratios for the protein hits.								
Testing for normality	The standard deviation of the peptide ratios provides a measure of the uncertainty in the protein ratio.								
Outrier removal									
calculation	Since we are dealing with ratios, the average is the geometric mean and the standard deviation is the geometric standard deviation which is a factor work the confidence interval is obtained by dividing and multiplying the average by the								
Significant changes	standard deviation, which is never less than 1.0. For example, if the average is 0.91 and SD(geo) is 1.06 then the confidence	e							
Quantitation topics	interval is 0.86 to 0.96.								
Overview									
Report format	kauos for pepule matches are only reported if various quality criteria are fulfilled, the most important being:								
Configuration	Peptide modification state								
Statistical procedures	Minimum precursor charge, (default 1)								
Reporter protocol	 Strength of the peptide match, defined in terms of either a minimum score, a maximum expect value, or the score bein at or above either the identity threshold or the homology threshold (default maximum expect 00.05). 	ığ							
Precursor protocol	 Method specific criteria, such as a minimum number of fragment ion pairs for multiplex 								
Multiplex protocol									
Replicate protocol	A ratio for a protein hit is only reported if the minimum number of peptide matches, is achieved, (default 2). A standard deviation is only reported if the ratios for the pentide matches are consistent with a computed form a percent distribution								
emPAI protocol	deviation is only reported if the ratios for the peptide matches are consistent with a sample normal distribution.								
Average protocol	Testing for normality								
	Testing for outliers and reporting a standard deviation for the protein ratio can only be performed if the peptide ratios are								
	consistent with a sample from a normal distribution, (in log space). If the peptide ratios do not appear to be from a normal distribution, this may indicate that the values are meaningless, and something went systematically wrong with the the								
	analysis. On the other hand, it may indicate something interesting, like the peptides have been mis-assigned and actually								
	come from two proteins with very different ratios, so that the distribution is bimodal.								
	Shapiro-Wills W tast								
Done	🔮 Internet								

We have taken trouble to ensure that appropriate statistical procedures are correctly used. For example, we test that a set of peptide ratios is consistent with a normal distribution before rejecting outliers or reporting a standard deviation. Standard deviations are always geometric, because we are dealing with ratios that conform to a normal distribution in log space.

emPAI quantitation offers approximate, label-free, relative quantitation of the proteins in a mixture based on protein coverage by the peptide matches in a database search result. This approach was developed by Ishihama and colleagues

It is very simple. It is also very approximate, because there are many arbitrary assumptions in the way that the number of observed and observable peptides are calculated. Nevertheless, Ishihama's paper shows that it can be a useful guide to relative amounts. emPAI doesn't require a label or special data processing, so it is always reported in a standard Mascot results report, as long as the number of MS/MS spectra is at least 100

Multiplex is quantitation based on the relative intensities of sequence ion fragment peaks within an MS/MS spectrum. This approach, developed Zhang and Neubert, can be used with any chemistry that labels one peptide terminus and has a reasonably small mass shift.

This diagram, copied from the MCP paper, illustrates how it works. On the left, we have conventional quantitation; the 'precursor protocol' in Mascot terms. This requires the precursor intensity for each component to be integrated across its elution profile. In the case of the multiplex protocol, the MS1 transmission window is set wide enough to allow both components through simultaneously, giving a mixed MS/MS spectrum. The relative amounts can be measured from the sequence ions that include the labelled terminus. If the label is on the carboxy terminus, we see the ratios in the y ions.

The multiplex method has the potential to give excellent precision, because each ratio is represented by multiple sequence ion pairs. On the other hand, the ratio will only be accurate if several constraints are met.

This is an example using a dataset courtesy of Zhang and Neubert. The instrument was an ion trap and the label is 13C(6) SILAC on K and R. If we look at one of the spectra from the Ephrin peptides

We can see that the heavy component has been strongly up-regulated

In contrast, this is a spectrum from ribonucleoprotein, which is close to 1:1. This spectrum illustrates the importance of selecting sequence ions that are not overlapped by interfering peaks. In this case, the y(10) pair has to be discarded because the light component coincides with the b(9) ion.

🌀 Back 🔹 🕥	- 🖹 🗟 🏠 🔎	iearch 🐈 Favorites 🚱 🔗 - 🌺 党 * Powermarks 👫 👍 %	
Address 💩 http://t4	1-jsc/mascot/x-cgi/ms-config.ex	?u=1179673330	💌 🄁 Go
	Edit Quantita	tion Method:180 corrected [MD]	
	Name		
	Name 180 corrected	[MD] Description Includes correction for isotope overlap and 95% [a	
	Mathad Bratagal	Companyet Report Ratio Totagration Quality Outlieve Nermalization	
	Component	Component Report Ratio Integration Quanty Oddiers Normansadon	
	Components:	1802 V New Copy Delete	-
	Property	Value Action	
	Component	1802	
	Modification groups	Variable group 1 Delete Add Modification Group	J
	Isotopes	Add isotope	
	Corrections	Type: averagine Y Shift:	
		Type: impurity y Shift	
		Element: 0 V 5.0 Delete	
		Type: impurity V Shift:	
		Element: 180 V 95.0 Delete Add correction	
			-
	Save changes	Cancel	
	Help Window		
		8	4
 副			Local intranet
E			- Cotanitraliet

One of the complications of any type of isotope labelling is isotope impurity. It is rarely possible to get 100% enrichment. In the Mascot quantitation schema, this is described by a correction element. An 'impurity' correction works "downwards". That is, in this 180 method, some of the intensity of peptides labelled with the 180 label will appear at lower mass values because the heavy water is only 95% enriched. A second type of isotope correction, 'averagine', works "upwards". This describes how some of the intensity will be found at higher mass values because of the natural abundances of heavy isotopes. An averagine correction only matters when the mass delta is small, as in the case of 180 labelling.

A third type of isotope correction is used in iTRAQ, where the correction factors are obtained experimentally, by analysing the isolated reagents. This combines both upward and downward corrections for labels which have complex, multi-isotope compositions

.	Quantita TS2Mascot 0.0.90	tio	n - Rep	orter	,		
	ie in hans ie in James	^	4: Job run 12384; 03/11/20	05 18:21:04; MS-MS 2	KV Positive	Export all MS/MS spe Export selected spect PRECURSOR MASS	ctra in job run rum only OPMODE
			▶ 1 1		Unknown Unknown	2336.154 2617.197	MS-MS 2K MS-MS 2K
	🕀 🧰 Martin		1		Unknown	1252.544	MS-MS 2K
	New Project		1		Unknown	2014.033	MS-MS ZN
	E New Project				Unknown	2463 284	MS-MS-2K
			1		Unknown	1233 563	MS-MS 2k
			1		Unknown	2479 202	MS-MS-2k
	- New Project		1		Unknown	24/3.202	MS-MS-2k
	Spot Set JSL	_	3		Unknown	25/2.095	MS-MS-2k
	H New Project		4		Unknown	2486 308	MS-MS 2K -
	terren interrent saran terrent saran terrent saran	~			onnom	2100.000	•
	Peak Filtering			Mascol	t Server URL (e.g. http	://localhost/mascot/cgi/)	
	Mass Range 60	Da to	20 Da below precursor m	http://www.international.com	o://koala/mascot/cgi/		
	Minimum S/N 10		🔽 Monoisotopic peaks only	4000 S	eries Database Conne nected to TSQU	ction	Change
					Exit	Save peak list	1ascot Search

In data processing terms, the reporter protocol is one of the simplest. However, we did find that the peak list exported from the 4000 series data system or submitted to Mascot from GPS Explorer did not have the correct peak areas for the reporter ions. The numbers are different from those used within GPS Explorer for quantitation. We have had to write our own application to export a suitable peak list from the Oracle database. We've released this utility, called TS2Mascot, as freeware, and you can download it from our web site.

So, for iTRAQ, we could launch TS2Mascot and choose Mascot Search ...

Which brings up the search form. We choose an appropriate quantitation method. We don't need to specify the iTRAQ modifications or the cysteine alkylation, because these are predefined in the quantitation method. Submit the search...

G Back - 🕥 -	🖹 📓 🏠 🔎 Search 📌 Favorites 🚱 🔗 •	Powermarks 膬 \land %	
Address 🕘 http://www	atrixscience.com/cgi/master_results.pl?file=/data/F981131.dat		💌 🋃 Go
(MATRIX) SCIENCE	ascot Search Results		
User	: Mel Anogaster		
Email	: mel@bioc.cam.ac.uk		
Search title	: Time flies like an arrow		
MS data file	: U:\Docs\Quantitation\iTRAQ\cantab\denisef	28QSTARcor.mgf	
Database	: SwissProt 51.6 (257964 sequences; 9394743	3 residues)	
Quantitation	: iTRAQ 4plex <u>method details</u>		
	: Applied Blosystems iTRAU(TM) reagent		
Protein bite	115/114 116/114 117/114		
FIGUEIN MILS	0 914 1 438 1 809 APLP DOME AV	olinophoring precursor (Retinoid- and fatty ac-	id-hinding glyconr
	1 761 9 945 2 225 VIT2 DROVE VI	tallogenin-2 presurger (Vitallogenin III) (Vall	nrotein 2) - Dro
	1 901 2 221 1 212 DDT DD00F Dr	otoin digulfido-igomorogo progurgor (FC E 2 4)	(BDI) - Drogorh
	1.891 3.221 1.717 PDT DROME PE	Delin disullide-isomerase precursor (EC 5.5.4.	.) (PDI) = Drosoph
	1.020 1.191 0.884 0666 DROME 0D	P-grucose:grycoprotein grucosyltransierase pret	Jursor (EC 2.4.1
	0.846 1.656 3.253 <u>EFTI_DROME</u> ET	ongation factor 1-alpha (EF-1-alpha) (50 KDa re	male-specific pro
	1.096 4.004 6.741 TOP2 DROME DR	A topoisomerase 2 (EC 5.99.1.3) (DNA topoisomer	ase II) - Drosoph
	0.969 1.221 2.165 RL4_DRUME 60	S ribosomal protein L4 (L1) - Drosophila melano)gaster (Fruit fly
	1.042 2.008 3.426 VDAC DROME Vo	itage-dependent anion-selective channel (Porin)	(DmVDAC) - Droso
	1.422 1.906 1.335 HSP7C DROME He	at shock 70 kDa protein cognate 3 precursor (78	s RDa glucose-regu
	1.090 1.839 1.182 <u>YL DROME</u> PO	tative vitellogenin receptor precursor (Protein	1 YOIKIESS) (TL) -
	1.411 2.166 0.928 SPICA DROME SP	ectrin alpha chain - brosophila melanogaster (n	ruit riy)
	0.357 0.831 1.733 ATPE DROME AT	P synthase subunit beta, mitochondrial precurso	or (EC 3.6.3.14) -
	1.051 2.172 2.301 GBLP_DROME GG	anine nucleotide-binding protein Subunit beta	ike protein (kece
	0.747 1.363 2.370 RS3 DRUME 40	S ribosomai protein 53 - Drosophila melanogaste	er (Fruit riy)
	1.174 1.180 1.554 VITI DROME VI	Ceriogenin-i precursor (Vitellogenin I) (TOIR)	Decen i) - Droso
	1.314 1.007 0.717 (ALTS DROME 60	is recommendation process in 210 (BBC1 process homolog)	- prosopnila mela
	1.214 1.057 0.717 CALE DROME CS	musete kinege (EC 2 7 1 40) (DE) - Dreserbile v	<pre>>r; = prosophila m</pre>
	0.756 0.752 2.068 DARP DROFF P-	lundenulate_binding protein (Polu()) binding re-	cotain) (DARD)
	1 256 1 959 2 789 PL9 DROFF 60	Systemyiste-singing protein (Poly(X)-Singing protein (Poly(X)-Singing protein 19 - Drosophile welenogests	(FADF) = D
	LAMC1 DROME 10	minin subunit comme-1 procursor (Lewinin P2 ch	ain) - Drogonhile :
	LANCI DROME LS	anin Sasanto gamma-i precursor (naminin 52 Cha	, - prosopnila
<			>
Done 🗧			Internet

And back comes the report. At the top is a summary of the protein ratios. In this example, the method asks for ratios to 114, but you have total flexibility. You can edit the quantitation method to report two pairs, e.g. 115/114 and 117/116, or something more complex, like ratios to the sum of all four channels. Note that you can't do this if you are using our public web site, because this is a shared resource, so you don't have access to the configuration editor.

G Bac	k - C) - 💌 🕻	2 🏠 🔎	Search 🤶 Far	vorites 🧭		· 🎍	•	Po	wermarks 🕅	A %		
2.	VIT3_I Vitel:	DROME Ma logenin-3 p	uss: 50436	Score: 5 (Vitellogeni	15 Que n III) ('	ories n folk p:	natche d rotein	1: 19 3) - Di	emPAI:	1.13 la melar	ogaster	(Fruit f	1y)
	Quanti	tation: R	atio W 15/114 1 16/114 2	eighted N 761 10 .245 10	SD(geo) 1.144 1.560	aren		P ie	eak	dete The	ection peak	n is ti ks do	ricky for repor not have a
(Juery	1 Observed	17/114 3 Mr(ехр	.225 11 t) Mr(calc)	NN) Delt	a Miss	Score	ь В	atu	ral is	otop	e dist	ribution
	<u>54</u> <u>96</u>	534.7767 625.8919	1067.53	38 1067.5491 92 1249.7630	L -0.010 3 0.005	30 50	38 36		• T	urn c	off de	e-isot	oping
 Image: Construction Image: Construction<	114	670.3865	1321.74	32 1321.739 34 1338.738	7 0.016	8 0	(19)		• D	on't	use s	mart	peak detection
	119 134	670.3867 705.4144	1338.75	1338.738 12 1408.780	7 0.020	2070	57 68	0.0	li	ke M	ascot	: Dist	iller
 Image: Second sec	143 147	723.4282	1444.84	18 1444.8283	2 0.013	4 0	35	1	7 1				K.NAQEQQQQLK.S
 Image: Construction Image: Construction<	166 172	1119.1100	2236.20	54 2236.2558	- 0.017 3 -0.050	4 0	+2 61 70	0.0008	, 1 9 1 5 1	1.773	7.411	11.119	K.AASGDLIIIDLGSTLTNF
 Image: Construction Image: Construction<	173	789.3896	2365.14	70 2365.149	5 -0.029 5 -0.002	50	(29)	1.	1 1	0.995	1.113	1.314	R. GDADF VDAINTSTFANGT
 Image: Construction Image: Construction<	175	789.7163	2366.12	71 2365.149	5 0.977	60	(10)	3.0070	1 1				R. GDADFVDAINTSTFANGT
 Image: Construction Image: Construction<	223	1029.1577	3084.45	L3 3083.4572	2 0.994	00	25	1.	5 1				R. CGDVDFYPNGPSTGVPGS
 Image: Construction Image: Construction<	229	1294.9831 971.4973	3881.92	75 3882.0043 01 3882.0043	3 -0.076 3 -0.044	8 1 2 1	(21) 22	3.	4 1	1.261	0.026	0.037	K.WLTATELENVPSLNDITW K.WLTATELENVPSLNDITW
<													×
													Internet

If you wish, you can display ratios for individual peptides. The reason there is no standard deviation for the 117/114 ratio is that it failed the normal distribution test. As you can see, the individual peptide ratios have quite a scatter. One thing you have to be very careful with is peak detection. Reporter ions do not have a natural isotope distribution, so anything that expects this, like Mascot Distiller, will not be reliable. Definitely advisable to experiment with the peak picking conditions.

Finally, I can reassure you that we are hard at work on the final piece of the jigsaw, the Quantitation Toolbox for Mascot Distiller.