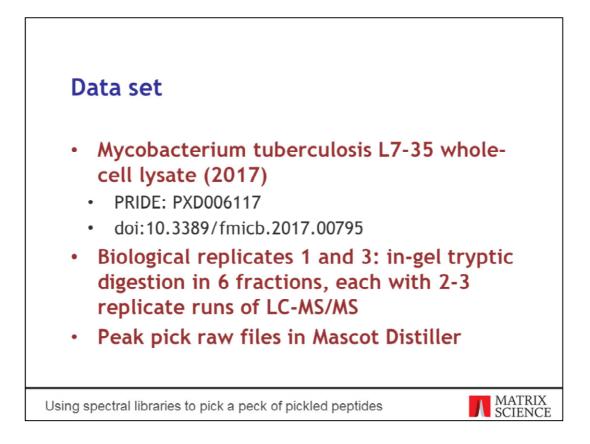
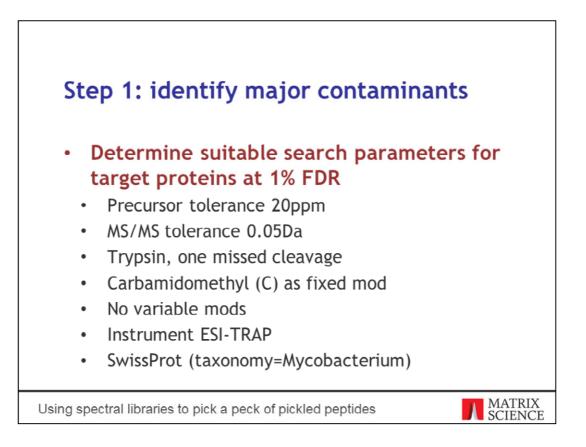

We added spectral library support in Mascot 2.6. I'll show you how to make good use of the feature by creating a spectral library for contaminants. The topic is wider than pickled foods, but of course you could make use of spectral libraries in food science as well. A peck of peptides would be around 9 litres or two gallons in case you're wondering.

The goal is to have a contaminants library that you can search together with a protein sequence database. Because the library is prepared in advance, it isn't subject to search space restrictions. This means it can contain highly modified or non-specific peptides, for example, without having to increase the database search space.

Why do we care about matching contaminants? Because high-quality contaminant spectra can otherwise become false positive matches in the target database.

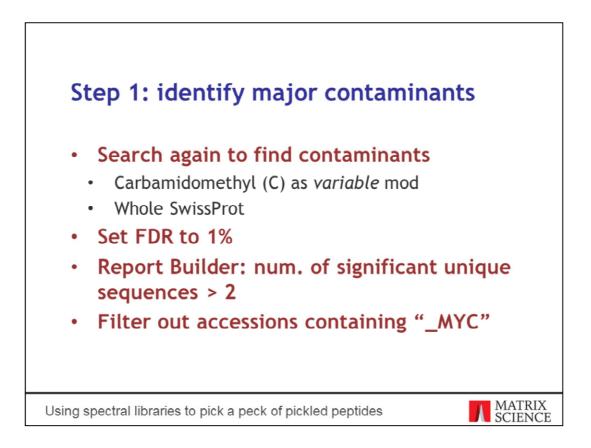


By the way, if you're on an earlier version and want to try spectral libraries in Mascot, now is a great time to update! 2018 is the 20th anniversary year of Matrix Science Ltd, and to celebrate, we're offering 20% off on all Mascot Server updates. Come talk to us at booth 522 after the presentation and we're happy to send you a quote immediately.



The library creation procedure is straightforward. First identify major contaminant proteins in your sample using a standard database search. Create a temporary database of the contaminant sequences and search them again using wider search parameters. You may want to do an error tolerant search or include uncommon or suspected modifications, or use a semi-specific enzyme or increase the number of missed cleavages. The point is to identify spectra that you wouldn't normally find for fear of increasing the search space too much. Once you have a set of high-confidence matches to contaminants, import the spectra in a library.

Of course the devil is in the details. The procedure works anywhere, but the resulting library cannot help but be specific to your lab or sample or protocol. There are so many sources of experimental variability: the contaminants you see may depend on the alkylating agent, the protease, sample to substrate ratio, digestion temperature and duration, additional derivatisation steps, isotopic labelling, and so on.

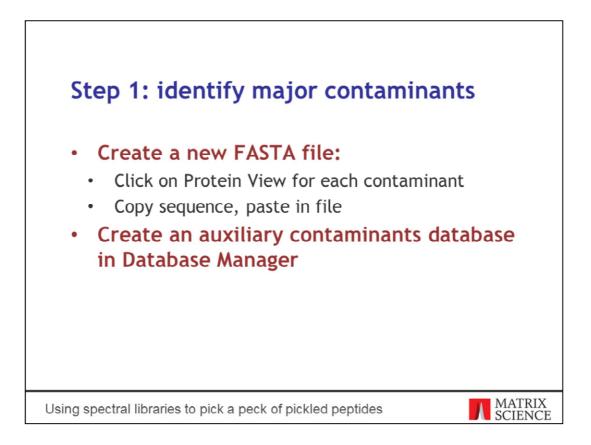

For demonstration purposes, I'll use a whole-cell lysate of a strain of Mycobacterium tuberculosis. This is from a study published in 2017. The data set is on PRIDE. There are three biological replicates of the whole-cell lysate for this strain. It's an in-gel tryptic digest, where the gel lane is divided in six fractions. Each fraction in turn has 2-3 replicate runs of LC-MS/MS using a Thermo Q-Exactive. We'll build the spectral library based on biological replicate 1 and then try it out on replicate 3.

First step is to identify the major contaminants. Suitable search parameters can be found by experience or trial and error. The instrument was a Thermo Q-Exactive. I've not included any variable mods at this stage, because the goal is to calibrate the mass tolerances and enzyme settings. The correct parameters are ones that give the highest sensitivity at 1% FDR.

For some reason, the authors used MS/MS tolerance of 0.5Da, but the data is an order of magnitude more accurate.

We'll search against SwissProt with Mycobacterium taxonomy, mainly for the convenience of this presentation. In real life, you would use a complete proteome or a genome database for the strain being analysed.

Repeat the search, but this time set all fixed mods as variable. Potential contaminants are not necessarily alkylated, for example. Search against the whole of SwissProt to identify all potential contaminants. We don't expect to find exotic contaminants in this sample.

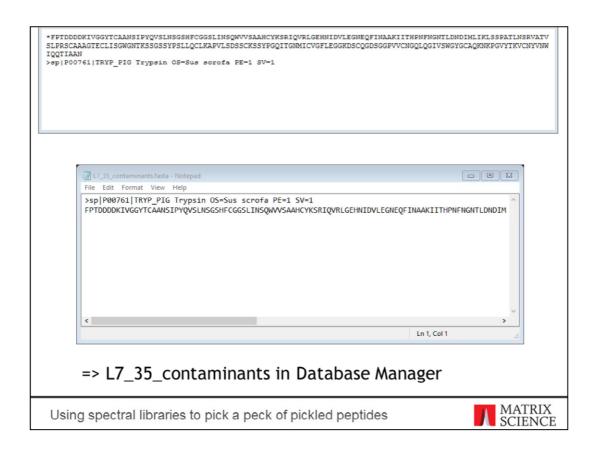

After the search is done, set FDR to 1%. Go to Report Builder and filter out the really minor contaminants by requiring matches to at least two significant sequences. Filter out any protein accessions from tuberculosis. The easiest filter is underscore-MYC.

PSMs	~	above hom	swissPre ology ~ 21873	218	1.00%	Adjust to 19	6 ~	
Decoy res	ults	are availabl	le in z'the decoy re	port.				
Protein	s (9	74) Rep	ort Builder	ssigned	(97171)]		<u>§ permalink</u>
	-					1		
Protein	hi	ts (434 p	proteins)					
Column	15 (out of 16)						
Filters	"N.	um of signi	ficant unique seq	uences"	> 2			
Fillers.	N	ini. or signi	incant unique seq	uences	12			
Export as	CSV							
†Family	м	DB	Accession	Score	Mass	Match(sig)	Sea(sia)	Description
1	1	SwissProt	CH601_MYCBP	27823	56692	697	28	60 kDa chaperonin 1 OS=Mycobacterium bov
2	1	SwissProt	IN ALBU_BOVIN	21270	69248	752	29	Serum albumin OS=Bos taurus GN=ALB PE=1
3	1	SwissProt	∠LLDD_MYCTO	20494	45313	644	21	Putative L-lactate dehydrogenase OS=Mycot
4	1	SwissProt		16142	43566	450	20	Elongation factor Tu OS=Mycobacterium bov
5	1	SwissProt	DNAK_MYCBO	14642	66790	444	24	Chaperone protein DnaK OS=Mycobacterium
6	1	SwissProt	∠"HBHA_MYCBO	13350	21522	300	9	Heparin-binding hemagglutinin OS=Mycobact
Z	1	SwissProt	METE_MYCBO	12555	81531	409	31	5-methyltetrahydropteroyltriglutamatehom
8	1	SwissProt	ØETFA_MYCTO	10562	31672	308	16	Electron transfer flavoprotein subunit alpha (
2	1	SwissProt		9970	44250	268	15	3-oxoacyl-[acyl-carrier-protein] synthase 2
2	2	SwissProt	d'FAB1_MYCBO	4523	43289	139	13	3-oxoacyl-[acyl-carrier-protein] synthase 1
2	3	SwissProt		2084	43443	45	6	3-oxoacyl-[acyl-carrier-protein] synthase 1
10	1	SwissProt	gclNA1_MYCBO	9090	53536	274	17	Glutamine synthetase 1 OS=Mycobacterium I
11	1	SwissProt	DBH_MYCBO	6634	22174	289	9	DNA-binding protein HU homolog OS=Mycoba
12	1	SwissProt	ØATPB_MYCBO	6389	53061	259	24	ATP synthase subunit beta OS=Mycobacterit
13	1	SwissProt	dY0148_MYCTU	6326	29760	159	10	Putative short-chain type dehydrogenase/re-
14	1	SwissProt	SERA MYCBO	6323	54521	172	19	D-3-phosphoalvcerate dehvdrogenase OS=M V
								,

Here's the list of protein hits against all of SwissProt at 1% FDR. Most of the accessions are from various mycobacteria. Their accessions end with MYC-something. We can easily filter them out.

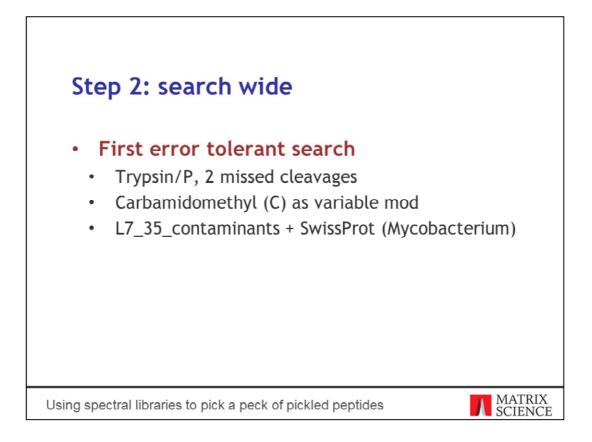
	ivity	and FDR (r	eversed protein	sequend	es)			
			SwissPi	ot Deco	y FDR			
PSMs	~	above hom	ology ~ 21873	218	1.00%	Adjust to 1	% ~	
Decever	oculto	are availab	le in ofthe decov re	nort				
Decoy I	esuits	die avaliau	le in Bule decoy n	eport.				
Deale		-	ort Builder		(97171)			§ permalink
Prote	ins (9	(74) кер	iort Builder	assigned	(9/1/1)			<u>a permainik</u>
Protei	in hi	ts (9 pro	teins)					
		9 out of 16)						
Filter	s: (N	OT(Accessi	on CONTAINS "_N	IYC") A	ND "Num	. of significar	nt unique s	equences" > 2)
Export a	s CSV							
†Famil	<u>v</u> M	<u>DB</u>	Accession	Score	Mass	Match(sig)	Seq(sig)	
2	1	SwissProt	ZALBU_BOVIN	21270	69248	752	29	Serum albumin OS=Bos taurus GN=ALB PE=1 S
31	2	SwissProt	☑RPOC_LEIXX	618	142285	20	4	DNA-directed RNA polymerase subunit beta' O
51	1	SwissProt		2349	65999	96	13	Keratin, type II cytoskeletal 1 OS=Homo sapie
51	2	SwissProt		553	60030	33	7	Keratin, type II cytoskeletal 6B OS=Homo sap
	3	SwissProt		365	65393	26	8	Keratin, type II cytoskeletal 2 epidermal OS=
51	1	SwissProt	rdK1C10_HUMAN	1793	58792	56	12	Keratin, type I cytoskeletal 10 OS=Homo sapi
_		SwissProt	TTHY_BOVIN	1732	15717	43	3	Transthyretin OS=Bos taurus GN=TTR PE=1 S
71	1			1457	62027	52	11	Keratin, type I cytoskeletal 9 OS=Homo sapier
7 <u>1</u> 7 <u>5</u>	1	SwissProt	☑K1C9_HUMAN	1437				
51 71 75 98 294			<pre></pre>	423	24394	27	3	Trypsin OS=Sus scrofa PE=1 SV=1
7 <u>1</u> 75 98 294	1 1	SwissProt			24394		3	Trypsin OS=Sus scrofa PE=1 SV=1
71 75 98	1 1	SwissProt			24394		3	Trypsin OS=Sus scrofa PE=1 SV=1
71 75 98 294 Export a	1 1 as CSV	SwissProt	♂TRYP_PIG		24394		3	Trypsin OS=Sus scrofa PE=1 SV=1
71 75 98 294 Export a	1 1 as CSV	SwissProt	d'TRYP_PIG	423		27		Trypsin OS=Sus scrofa PE=1 SV=1
71 75 98 294 Export a	1 1 as CSV	SwissProt	d'TRYP_PIG	423				Trypsin OS=Sus scrofa PE=1 SV=1
71 75 98 294 Export a	1 1 as CSV	SwissProt	d'TRYP_PIG	423		27		Trypsin OS=Sus scrofa PE=1 SV=1

This leaves a list of nine proteins. The hit in family 31 is similar to an RNA polymerase subunit from M. tuberculosis, so it's not a contaminant. The eight proteins remaining proteins are the usual suspects: trypsin, bovine serum albumin, human keratins.

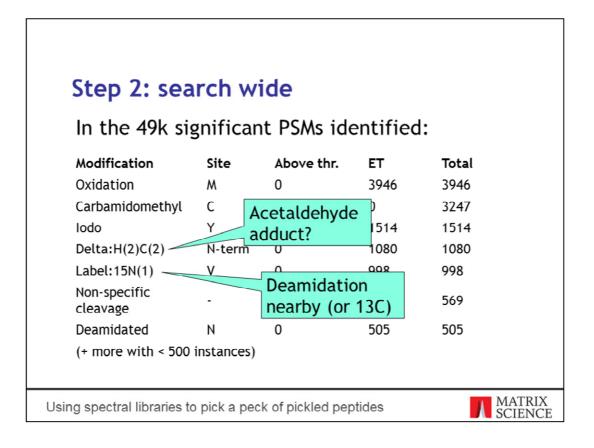

Now that we have a list of potential contaminants, let's make a FASTA file out of them. It's not strictly necessary but will make subsequent searches and filtering easier. Since there are only 8 contaminant proteins, we can copy and paste the protein sequences from Protein View in a new file.

	, any		eversed protein : SwissPi						
PSMs	~	above hom	ology ~ 21873	218	1.00%	Adjust to 1	% ~		
Decoy res	ults	are availabl	le in z'the decoy r	eport.					
Protein				assigned	<u>(97171)</u>]		<u>& permalink</u>	
Proteir	ı hi	ts (9 pro	teins)						
Colum	15 (9 out of 16)							
Filters:	(N	OT(Accessie	on CONTAINS "_M	AYC") A	ND "Num	. of significar	t unique s	equences" > 2)	
Export as	CON								
Export as	CSV								
<i>Family</i>	м	DB	Accession	Score	Mass	Match(sig)	Seq(sig)	Description	
2	1	SwissProt	ZALBU_BOVIN	21270	69248	752	29	Serum albumin OS=Bos taurus GN=ALB PE=1 S	
31	2	SwissProt	RPOC_LEIXX	618	142285	20	4	DNA-directed RNA polymerase subunit beta' O	
51	1	SwissProt		2349	65999	96	13	13 Keratin, type II cytoskeletal 1 OS=Homo sap	
51	2	SwissProt	rdK2C6B_HUMAN	553	60030	33	7	Keratin, type II cytoskeletal 6B OS=Homo sap	
51	3	SwissProt		365	65393	26	8	Keratin, type II cytoskeletal 2 epidermal OS=+	
71	1	SwissProt	rdK1C10_HUMAN	1793	58792	56	12	Keratin, type I cytoskeletal 10 OS=Homo sapi	
75	1	SwissProt	TTHY_BOVIN	1732	15717	43	3	Transthyretin OS=Bos taurus GN=TTR PE=1 SV	
98	1	SwissP et	☑K1C9_HUMAN	1457	62027	52	11	Keratin, type I cytoskeletal 9 OS=Homo sapier	
294	1		TRYP_PIG	423	24394	27	3	Trypsin OS=Sus scrofa PE=1 SV=1	
Export as	CON								
Export as	CSV								
lot what wo		ested? To the	he select summary.						
tot what yo		Acced? Hy Do	ne select summary.						
			Ma	iscot: 🗹	http://ww	vw.matrixscien	ce.com/		
								>	
								,	

I'll quickly show you how to harvest the sequences. Click on the protein in the accession column...


	MATRIX SCIENCE MASCOT Search Results	*	
P	rotein View: TRYP_PIG		
Tr	rypsin OS=Sus scrofa PE=1 SV=1		
Sc Me Ca Ta Se	atabase: SwissProt core: 423 onoisotopic mass (Mr.): 24394 alculated pI: 7.00 axonomy: Sus scrofa equence similarity is available as an NCBI BLAST search of TRYP_PIG against nr.		
MS En Va	S data file: L7_35.mgf nzyme: Trypsin: cuts C-term side of KR unless next residue is P. ariable modifications: Carbamidomethyl (C)		
	rotein sequence coverage: 16% atched peptides shown in <i>bold red</i> .		
1	1 FPTDDDDKIV GGYTCAANSI PYQVSLNSGS HFCGGSLINS QWVVSAAHCY 51 KSRIQVRLGE HNIDVLEGNE QPINAAKIIT HPNFNGNILD NDIMLIKLSS 01 PATLNSRVAT VSLPRSCAAA GTECLISGNG NIKSSGSSYF SLLQCLKAPV 51 LSDSSCKSSY PGQA C VGFLEGGKDS CQGDSGGPVV CNGQLQGIVS 01 WGYGCAQKNK PGVYIK NWLQQTIAA N		
So	formatted sequence string: <u>231 residues</u> (for pasting into other applications). ort by [®] residue number ○ increasing mass ○ decreasing mass how [®] matched peptides only ○ predicted peptides also	*	
Us	sing spectral libraries to pick a peck of pickled peptides	RIX ENCE	3

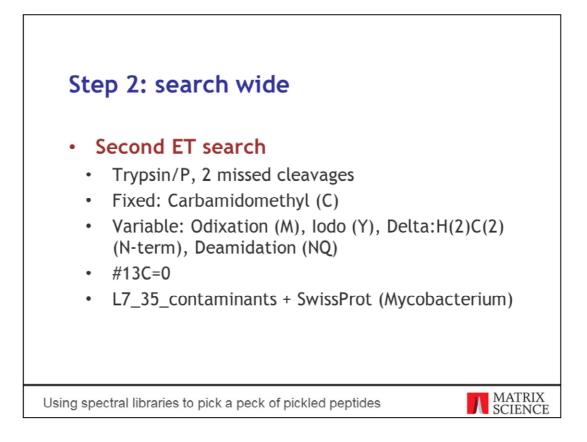
Here's porcine trypsin. Click on the link to unformatted sequence string.



Here's the unformatted sequence string. Copy-paste into your text editor, swap the lines and remove the leading asterisk from the sequence. Rinse and repeat for the seven other contaminant proteins. This only takes a few minutes.

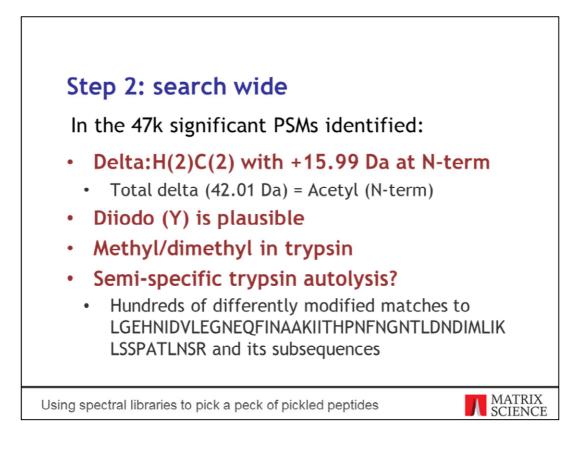
Creating the database is easy: create new in Database Manager, upload the FASTA file, choose the recommended parse rules and you're done.

Now we come to the fun part. Let's see what modifications the contaminants carry. Search only the contaminant proteins from the previous step. The purpose is find the most abundant modifications that need to specified as fixed and variable. Allow for more missed cleavages as well.



The error tolerant search finds about 49000 matches in total in both the contaminants and tuberculosis proteins. Here are the top modifications.

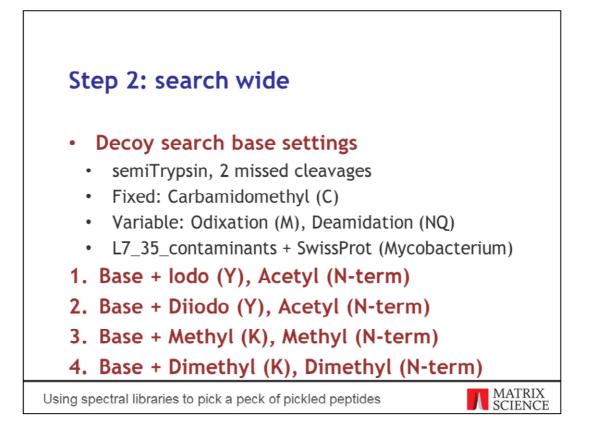
There's definitely oxidised methionine in this sample, and you might as well set carbamidomethylation as fixed mod. Looks reasonable to choose iodonation of tyrosine as a variable mod.


The 15N label is hard to believe, since there's no such labelling in the sample. Many of the sequences with this delta have an asparagine or glutamine next to or near the modified residue, so this is more likely to be deamidation – which also appears near the top of the list. Another possibility is that peak detection has chosen the 13C peak rather than 12C.

The more surprising item is Delta:H(2)C(2). This is an acetaldehyde adduct that normally modifies lysine. In this search, it's only found on the N-terminus.

Do a second ET search. This time, choose Carbamidomethyl as a fixed mod and these four as variable mods. This will show which mods occur in combination with the most abundant ones. It will also either confirm or disprove the presence of the acetaldehyde adduct.

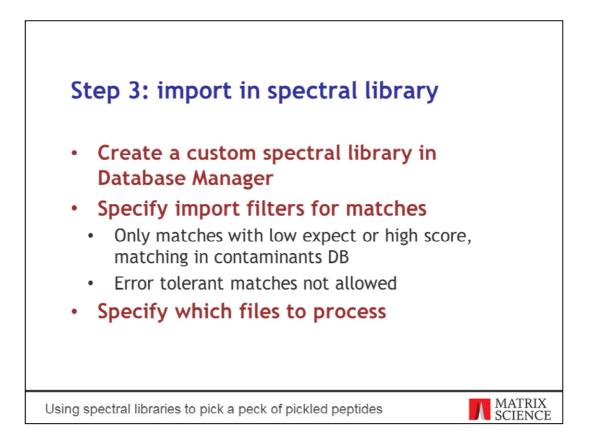
I've chosen deamidation rather than the possibility of carbon isotopes. A quick search with 13C set to 1 or 2 found hardly any new matches in the contaminants, so deamidation is the more likely candidate.

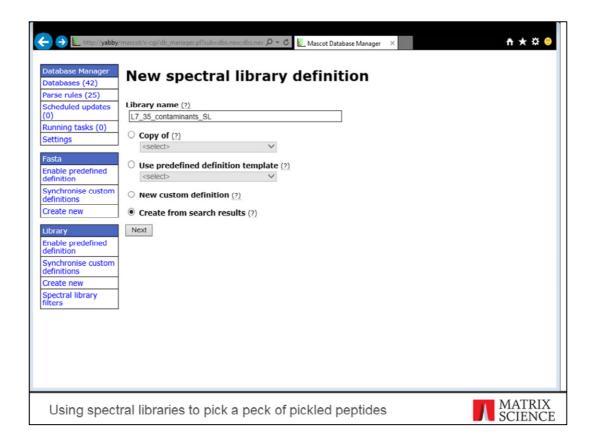


When the search is done, it's important to inspect the high-scoring error tolerant matches in contaminants, especially those with both variable modifications and an error tolerant modification. The error tolerant delta can cancel out the variable modification, or they can sum up to a different, more common variable modification.

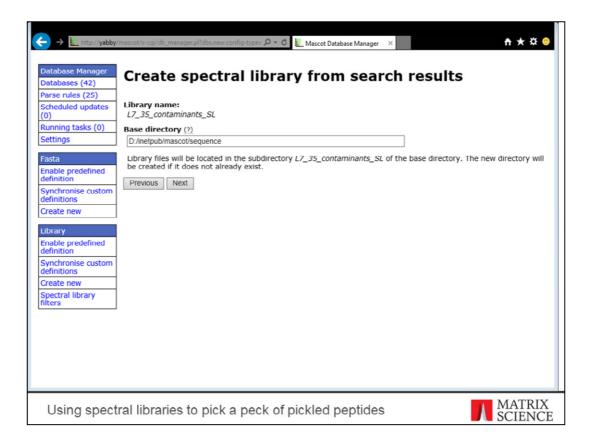
The acetaldehyde adduct often occurs in combination with another error tolerant delta of 15.99 Daltons at the N-terminus or N-terminal residue. The combined delta is exactly the same as an acetylated N-terminus, which is a far more common variable modification.

There's clearly iodonation in the sample, and diiodo appears near the top of the list, so it's reasonable to include it.

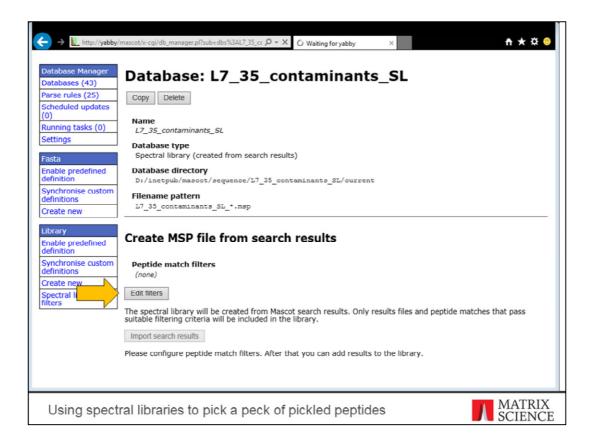

Peptide matches in trypsin show signs of methylation or dimethylation. This isn't surprising, since trypsin is frequently methylated to prevent autolysis. Interestingly, there are hundreds of low-scoring matches to this long peptide and its subsequences, using various permutations of modifications, which suggests semi-specific autolysis.


Now we can create the final peptide matches to import in the library. The library import tool will refuse to import error tolerant matches, because there's no way to tell whether the match is "real". It's important to run a decoy search with your chosen set of modifications, so that you can exert quality control.

In real life, you might want to run these searches separately for each contaminant. In the interests of time, I'll do all contaminants together. We'll use semiTrypsin to account for autolysis, and these modifications as the base settings.


We'll run four separate searches with different combinations of modifications. The first two are mainly for iodonation in serum albumin, and the next two for methylated lysines in trypsin. We don't expect to see a methyl and a dimethyl on the same peptide, for example, or both iodonation and diiodonation, so there's no point in putting all the variable mods in one big search.

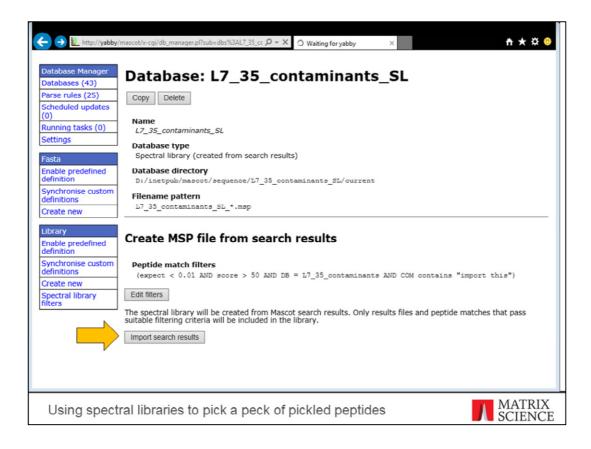
The final step in creating the contaminants library is of course importing the matches. This is straightforward in Database Manager. The two details to address are defining the import filters for peptide matches, and defining which results files are processed. We only want to import high-quality matches, so they should have low expect value or high score. We only want to import peptides that match in the auxiliary contaminants database; this is where it becomes handy.


Choose Library, Create New. Type in a name and choose to create from search results.

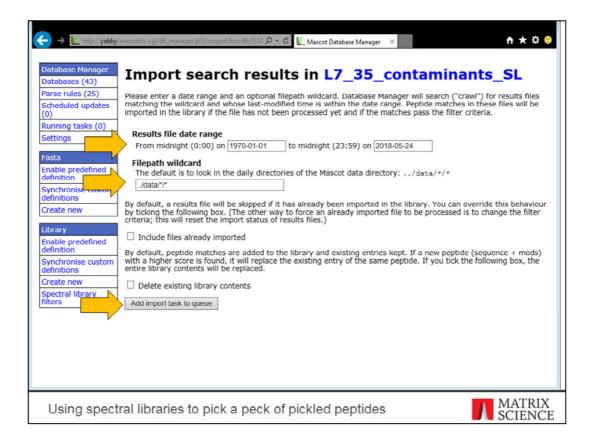
Click Next.

← → ₩_ http://yabby.	/mascot/x-cgi/db_manager.pl?dbs.new.base_path=D 🔎 🕆 🖒 🗽 Mascot Database Manager 🛛 × 👘 🛧 🌣 🙂
Database Manager Databases (42)	Create spectral library from search results
Parse rules (25) Scheduled updates (0)	Library name: L7_35_contaminants_SL
Running tasks (0) Settings	Sequence directory D:/inetpub/mascot/sequence
Fasta	Reference database
Enable predefined definition	Please choose a reference database. Where possible, protein accessions for peptides in the spectral library will be taken from the specified Fasta file (the reference database). This will make protein inference more reliable and allows a Protein View report to be displayed for a library hit.
Synchronise custom definitions	SwissProt V
Create new	Taxonomy
Library Enable predefined definition	If the selected reference database has taxonomy configured, you can optionally choose a taxonomy for reference accessions.
Synchronise custom definitions	(none) V MS/MS tolerance
Create new Spectral library filters	Please enter estimates for the absolute and relative tolerances of the fragment masses in the library. The tolerances in the Mascot search form apply to the data being searched. A library contains experimental spectra, also subject to mass measurement error. It is better to enter values that are too large rather than too small.
	0.05 Da 20 ppm
	Previous Create
Using spect	tral libraries to pick a peck of pickled peptides

We want to use SwissProt as the reference database. The fragment tolerance in this data set is a nice 20ppm, which you can approximate as 0.05Da.



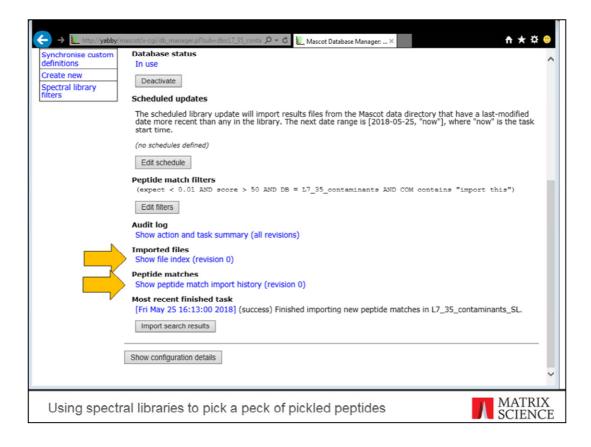
The library definition has been created. Click on Edit Filters.


(→) L http://yabby/mascot/x-cgi/db_manager.pl?sub=sl.filter-editor.tra P < 0 L Mascot Database Manager × Ine library must have at least one score or expect value filter, typically expect < 0.01.	n 🛧 🌣 🙂
Each individual filter is in a filter group. To add more filters to the group, use the OR button. To add more groups, use the AND button. The peptide match must pass all filter groups to be accepted, but within each group, only one filter needs to succeed.	^
To remove a filter, leave its value field empty. To remove a filter group, remove all its filters.	
Filters are used in two complementary ways:	
 When Database Manager chooses results files to process, only files that might contain suitable peptide matches are included. When Database Manager loops over peptide matches in a results file, only matches that pass the filter are imported to the library. 	
For example, if you have a filter DB = SW155Prot and no other DB filters, then only results files that were searched against SwissProt are processed. (Or in a multi-database search, had SwissProt as one of the databases.) When Database Manager loops over its peptide matches, only those that actually come from SwissProt are imported.	
Expect value V < V 0.01	OR
AND	
Score V > V 50	OR
AND	
Database name	OR
AND	
Search title	OR
AND	
Cancel Test Save	
	~
<	>
Using spectral libraries to pick a peck of pickled peptides	MATRIX SCIENCE

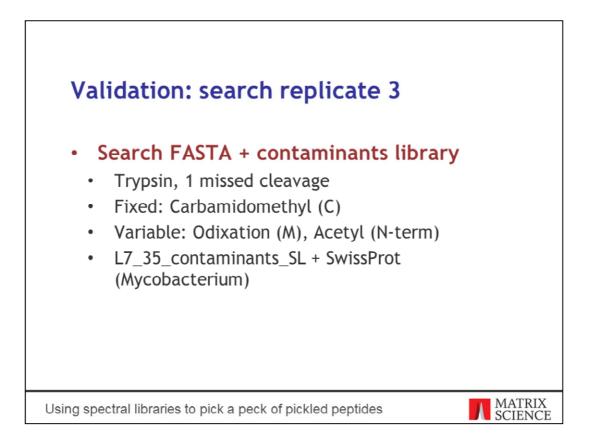
Based on inspecting the two search reports, matches with expect value below 0.01 and score above 50 are very likely to filter out false positives. We only want matches in the auxiliary contaminants database – this is where having an auxiliary database comes in handy.

If you're very organised, you can use a search title filter here to include specific searches only. I put the string "import this" in the search title.

Match filters are defined. Now click on Import.



Here you choose the files to process. It's a good idea to use a narrow date range if all your searches were made today or last week, to avoid having to crawl through the whole search archive.


The default wildcard chooses all searches on the Mascot Server machine. If you have files in a specific directory or with a specific name, you can define the wildcard here. Since my search titles include a special string, I don't need to change the wildcard.

You can always repeat the import step to include files in matching the filters in different directories, so importing can be cumulative.

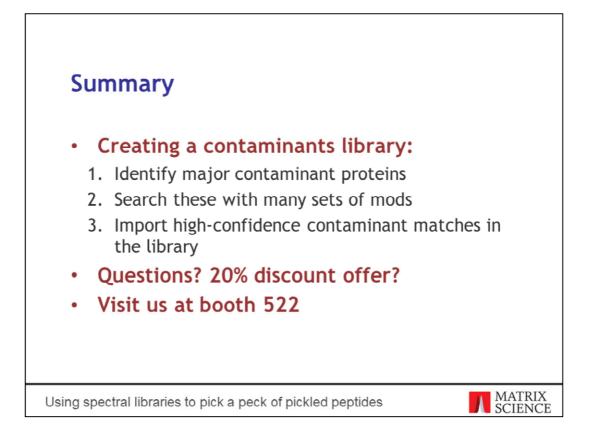
Click on Add Import Task.

When importing is done, you can check which files were processed and which matches imported by following these audit log links. The audit log contains the complete change history of the spectral library, including a history of the filter settings.

The contaminants library is ready for use. Remember we built it based on biological replicate 1. Let's search replicate 3 as a validation step. Since all the sample prep is the same, we expect to find most if not all of the same contaminants.

The database search parameters use strict trypsin and only two variable mods.

	Matche	es		Modification	Site	Above thr.
FASTA	21,367	'		Oxidation	Μ	2511
Librar	y 1,176			Acetyl	N-term	1798
Total	22,539			Carbamidomethyl	С	1029
ισται	22,337			Dimethyl	к	132
				Deamidated	Ν	45
Family	Accession	Score	Match(sig)	lodo	Y	17
	2::ALBU_BOVIN	35680	947	Methyl	К	16
<u>9</u> 5	d'2::TRYP_PIG d'2::TTHY_BOVIN	4461 1593	158 49	Deamidated	0	10
242	d2::K2C1_HUMAN	578	16	Dimothyl	N	9
42	2::K22E_HUMAN	61	4	Dimethyl	И	9


There are a number of matches in the contaminants library. These are all high-scoring spectra that might have otherwise become false positive matches in the database search. We can find six of the eight contaminant proteins in the replicate.

Note in particular the range of modifications found. I only chose oxidation and acetylation as variable mods and carbamidomethyl as fixed, yet look at the range of mods found in the contaminants.

The last row, Dimethyl on N, is actually on an N-term residue.

✓ Auto-	fit to	window				
ppm M	Score	Source	Expect	Rank	U	Peptide
2.03 0	895	SL	5.6e-008	1	υ	K.LSSPATLNSR.V
0.29 0	375	SL	0.0089	11	U	R.LGEHNIDVLEGNEQFINAAK.I + Dimethyl
0.28 0	474	SL	0.00091	1	U	K.IITHPNFNGNTLDNDIMLIKLSSPATLNSR.V + Dimethyl
0.47 0	747	SL	1.7e-006	11	U	R.LGEHNIDVLEGNEQFIN.A
1.01 0	333	SL	0.023	1	U	R.LGEHNIDVLEGNEQFINAA.K
0.52 0	438	SL	0.0021	1	U	R.LGEHNIDVLEGNEQFINAAK.I
1.24 0	717	SL	3.4e-006	1	U	R.LGEHNIDVLEGNEQFINAAK.I + Methyl
0.069 0	963	SL	1.2e-008	1	U	N.TLDNDIMLIKLSSPATLNSR.V + Dimethyl
0.34 0	868	SL	1e-007	1	U	R.LGEHNIDVLEGNEQFINAAK.I + Dimethyl
1.90 0	877	SL	8.5e-008	1	U	N.TLDNDIMLIKLSSPATLNSR.V + Dimethyl; Oxidation
0.97 0	789	SL	6.4e-007	1	U	N.GNTLDNDIMLIKLSSPATLNSR.V + Dimethyl
0.74 0	441	SL	0.0019	11	υ	N.FNGNTLDNDIMLIKLSSPATLNSR.V + Dimethyl
20.6 0	304	SL	0.046	11	υ	P.NFNGNTLDNDIMLIKLSSPATLNSR.V + 3 Deamidated; Dimethyl
6.04 0	395	SL	0.0056	11	U	P.NFNGNTLDNDIMLIKLSSPATLNSR.V + Deamidated; 2 Dimethyl; Oxidation
1.85 0	731	SL	2.4e-006	11	U	K.IITHPNFNGNTLDNDIMLIKLSSPATLNSR.V + Dimethyl
0.53 0	391	SL	0.0062	1	U	K.IITHPNFNGNTLDNDIMLIKLSSPATLNSR.V + Deamidated; Dimethyl
1.60 0	888	SL	6.6e-008	11	U	K.IITHPNFNGNTLDNDIMLIKLSSPATLNSR.V + Deamidated; Dimethyl
2.74 0	833	SL	2.3e-007	1	U	K.IITHPNFNGNTLDNDIMLIKLSSPATLNSR.V + Deamidated; Dimethyl
2.81 0	622	SL	3e-005	11	U	K.IITHPNFNGNTLDNDIMLIKLSSPATLNSR.V + Dimethyl; Oxidation
0.63 0	708	SL	4.2e-006	11	U	K.IITHPNFNGNTLDNDIMLIKLSSPATLNSR.V + Deamidated; Dimethyl; Oxidation
1.19 0	794	SL	5.7e-007	1	U	K.IITHPNFNGNTLDNDIMLIKLSSPATLNSR.V + Deamidated; Dimethyl; Oxidation
2.89 0	519	SL	0.00032	1	U	K.IITHPNFNGNTLDNDIMLIKLSSPATLNSR.V + Deamidated; Dimethyl; Oxidation
6.69 0	316	SL	0.035	11	υ	K.IITHPNFNGNTLDNDIMLIKLSSPATLNSR.V + 2 Deamidated; Dimethyl; Oxidation
1.06 0	515	SL	0.00035	11	U	N.AAKIITHPNFNGNTLDNDIMLIKLSSPATLNSR.V + Deamidated; 2 Dimethyl
0016 0	383	SL	0.0074	11	U	N.AAKIITHPNFNGNTLDNDIMLIKLSSPATLNSR.V + Deamidated; 2 Dimethyl; Oxidation
¢						>

As an example, here's the list of matches to trypsin. Unmodified, methylated and dimethylated trypsin autolysis products are all taken into account. There are many high-scoring semi-specific sequences in the list.

I've shown you the basic procedure of creating a spectral library for contaminants. The procedure works anywhere: identify major contaminants; search them with different sets of variable mods; import the results in the library.