




Modifications are a very important topic in database searching.

In some cases, the main focus of a study is to characterise post translational modifications, which may have biological significance. Phosphorylation would be a good example.

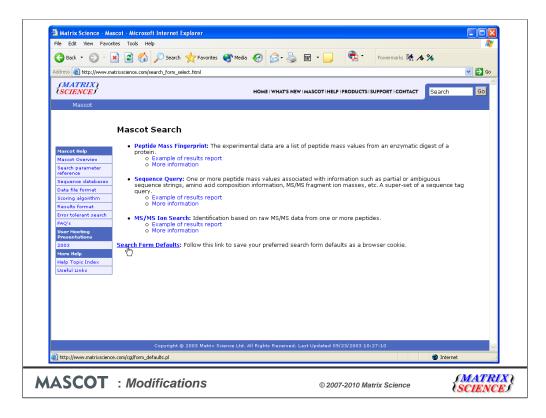
In other cases, the modification may not be of interest in itself, but you need to allow for it in order to get a match. Oxidation during sample preparation would be an example.

And, of course, most methods of quantitation involve tagging

Some sequence variants, such as the substitution of one residue by another, are equivalent to modifications, and can be handled in a similar way


| ddress | _      |           |   | 🗐 🏠 🔎          | ) Search 🛛 📌 Favori<br>st.php?goto=14 | tes 🚱 🔗 🤘                              | Powermarks 👫 \land 🛠                                         |                      |                              | ✓                               |
|--------|--------|-----------|---|----------------|---------------------------------------|----------------------------------------|--------------------------------------------------------------|----------------------|------------------------------|---------------------------------|
|        |        |           |   | OD prot        |                                       | s for mass spectro<br>s unimod Log out | metry<br>Change password Advanced search                     |                      |                              | Help                            |
|        |        | Add       |   | earch for:     | Any field                             | Contains Show a                        | ▼ Se                                                         | arch Detai           | ls found:<br>531<br>14 of 27 | Records Per<br>Page::<br>20 V   |
|        |        |           |   |                |                                       | Sele                                   | ct/Unselect all Delete selected                              |                      |                              |                                 |
| P      | -      | <b>\$</b> | Û | Accession<br># | PSI-MS Name                           | Interim name                           | Description                                                  | Monoisotopic<br>mass | Average<br>mass              | Composition                     |
| Edi    | t Copy | View      |   | 40             | Sulfo                                 | Sulfation                              | O-Sulfonation                                                | 79.956815            | 80.0632                      | 0(3) S                          |
| Edi    | t Copy | View      |   | 21             | Phospho                               | Phospho                                | Phosphorylation                                              | 79.966331            | 79.9799                      | H O(3) P                        |
| Edi    | t Copy | View      |   | 549            |                                       | Cys->Trp                               | Cys->Trp substitution                                        | 83.070128            | 83.0670                      | H(5) C(8) N S(-1)               |
| Edi    | t Copy | View      |   | 211            | NEIAA                                 | NEIAA-d0                               | N-ethyl iodoacetamide-d0                                     | 85.052764            | 85.1045                      | H(7) C(4) N O                   |
| Edi    | t Copy | View      |   | 747            |                                       | Malonyl                                | Malonylation of C and S residues                             | 86.000394            | 86.0462                      | H(2) C(3) O(3)                  |
| Edi    | t Copy | View      |   | 371            | HMVK                                  | HMVK86                                 | Michael addition of hydroxymethylvinyl<br>ketone to cysteine | 86.036779            | 86.0892                      | H(6) C(4) O(2)                  |
| Edi    | t Copy | View      |   | 324            | DTBP                                  | DTBP                                   | dimethyl 3,3\'-dithiobispropionimidate                       | 87.014270            | 87.1435                      | H(5) C(3) N S                   |
| Edi    | t Copy | View      |   | 178            | DAET                                  | ser_thr_DAET                           | phosphorylation to amine thiol                               | 87.050655            | 87.1866                      | H(9) C(4) N O(-1)               |
| Edi    | t Copy | View      |   | 379            | Hypusine                              | hypusine                               | hypusine                                                     | 87.068414            | 87.1204                      | H(9) C(4) N O                   |
| Edi    | t Copy | View      |   | 126            | Thioacyl                              | DSP                                    | thioacylation of primary amines (N-term<br>and Lys)          | 87.998285            | 88.1283                      | H(4) C(3) O S                   |
| Edi    | t Copy | View      |   | 185            | Label:13C(9)<br>+Phospho              | 13C9_Phospho_Tyr                       | and Lys)<br>C13 label (Phosphotyrosine)                      | 88.996524            | 88.9138                      | H C(-9) 13C(9) 0<br>(3) P       |
| Edi    | t Copy | View      |   | 212            | NEIAA:2H(5)                           | NEIAA-d5                               | N-ethyl iodoacetamide-d5                                     | 90.084148            | 90.1353                      | (3) P<br>H(2) 2H(5) C(4) N<br>O |
| Edi    | t Copy | View      |   | 724            |                                       | O-Methylphosphate                      | O-Methylphosphorylation                                      | 93.981981            | 94.0065                      | 0<br>H(3) C O(3) P              |
| Done   |        |           | _ |                |                                       |                                        |                                                              |                      |                              | Internet                        |
| Done   |        |           |   |                |                                       |                                        |                                                              |                      |                              | Uncernet                        |

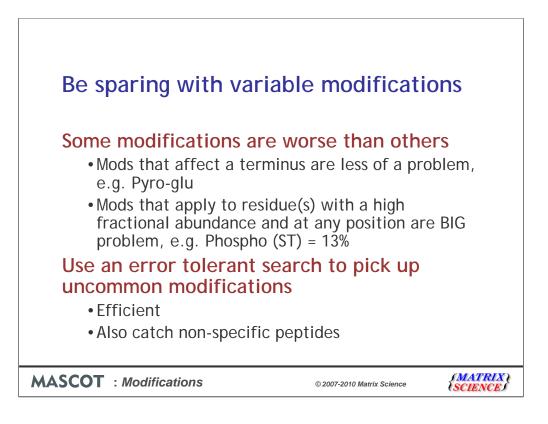
Comprehensive and accurate information about post translational and chemical modifications is an essential factor in the success of protein identification. In Mascot, we take our list of modifications from Unimod, which is an on-line modifications database.


| Unimod, View               | record [ Acc  | ession #: 5    | 5]                                                                    |                                                           |                                                                            |                                                              |
|----------------------------|---------------|----------------|-----------------------------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------------------|
| Back to list               | 56            |                | PSI-MS Name                                                           | Acetyl:2H(3)                                              | Interim Name                                                               | Acetyl_heavy                                                 |
| Accession #<br>Description |               | ing reagent /M | -term & K) (heavy form, +3amu)                                        | weedingu(3)                                               | Interim Name                                                               | AcetyLineavy                                                 |
| Alt. Description           |               |                | with with (neavy torin, +Jamu)                                        |                                                           |                                                                            |                                                              |
| Composition                | H(-1) 2H(3) C |                | Monoisotopic                                                          | 45.029395                                                 | Average                                                                    | 45.0552                                                      |
| Specificity De             |               | - (-/ *        |                                                                       |                                                           | . iverage                                                                  | 101000                                                       |
| Site                       | к             |                | Position                                                              | Anywhere                                                  | Classification                                                             | Isotopic label                                               |
| Hidden                     | 1             |                | Group                                                                 | 1                                                         |                                                                            |                                                              |
| Specificity De             |               |                |                                                                       |                                                           |                                                                            |                                                              |
| Site                       | N-term        |                | Position                                                              | Any N-term                                                | Classification                                                             | Isotopic label                                               |
| Hidden                     | 1             |                | Group                                                                 | 2                                                         |                                                                            |                                                              |
| Notes and Ref              | ferences      |                |                                                                       |                                                           |                                                                            |                                                              |
| Source                     | PMID          | eference       | 11857757                                                              |                                                           |                                                                            |                                                              |
| Source                     | PMID          | eference       | 11999733                                                              |                                                           |                                                                            |                                                              |
| Source                     | PMID          | eference       | 12175151                                                              |                                                           |                                                                            |                                                              |
| Source                     | sournar       | eference       | Fred E., Department of Chemistry,                                     | Purdue University, West Laf                               | ayette, IN, USA. Analytical Chemis                                         |                                                              |
| Source                     | Journal Re    | eference       | University, West Lafayette, IN, USA                                   | . Journal of Chromatograph                                | y, A (2002), 949(1-2), 173-184.                                            | ed E Department of Chemistry, Purdue                         |
| Source                     | Journal Re    | eference       | Comparative proteomics based on<br>Peiran; Chakraborty, Asish; Seeley | stable isotope labeling and<br>, Erin; Sioma, Cathy; Thom | affinity selection. Regnier, Fred E.;<br>Ipson, Robert A. Department of Ch | Riggs, Larry; Zhang, Roujian; Xiong, Li; Liu,<br>emistry, Pu |
| Curator                    | penner La     | ast Modified   | 2006-10-16 10:02:50                                                   |                                                           | Verified                                                                   | Yes                                                          |
| Back to list               |               |                |                                                                       |                                                           |                                                                            |                                                              |

There are other lists of modifications on the web, like DeltaMass on the ABRF web site and RESID from the EBI, but none is as comprehensive as Unimod

Mass values are calculated from empirical chemical formulae, eliminating the most common source of error. Specificities can be defined in ways that are useful in database searching, and there is the option to enter mass-spec specific data, such as neutral loss information. This screen shot shows one of the better annotated entries, I can't pretend that all of them are this detailed. Nevertheless, it is a very useful, public domain resource that beats having to create your own list in an Excel spreadsheet or on the back of an envelope.



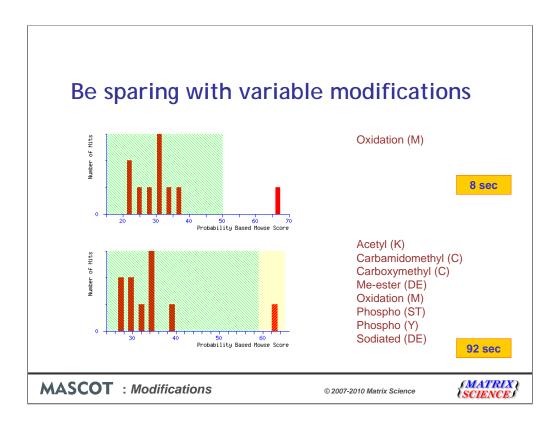

If you go to the help page, there is a link to download the contents of Unimod as a Mascot modifications file. This is the easiest way to keep the modifications list on an in-house Mascot server up-to-date



Here is a tip. The default list of modifications displayed in the Mascot search form is a short list, containing only the most common mods. If you want to see the complete list of mods, and you are using Mascot 2.2 or earlier, you need to follow the link at the bottom of the search form selection page

| 3 Back 🔹 🕥 🐇 💌                       | 📓 🏠 🔎 Search 🤸 Favorites   Media                                                          | 😔 🖂 🧐       |                       | Powerma  | rks 隆 ⁄ 🎸 |        |
|--------------------------------------|-------------------------------------------------------------------------------------------|-------------|-----------------------|----------|-----------|--------|
| ddress 🧃 http://www.matri            | xscience.com/cgi/form_defaults.pl                                                         |             |                       |          |           | 💌 🄁 Go |
| { <mark>MATRIX</mark> }<br>(SCIENCE) |                                                                                           | HOME WHAT'S | NEW I MASCOT I HELP I | PRODUCTS | Search    | Go     |
| Mascot > Set Se                      | arch Defaults                                                                             |             |                       |          |           |        |
|                                      |                                                                                           |             |                       |          |           |        |
| Set Mascot                           | search form defaults                                                                      |             |                       |          |           |        |
| Database                             | MSDB                                                                                      |             |                       |          |           |        |
|                                      | All entries                                                                               | ~           |                       |          |           |        |
|                                      | Trypsin V                                                                                 |             |                       |          |           |        |
|                                      | 1 v missed cleavages                                                                      |             |                       |          |           |        |
|                                      | AB old ICATd0 (C)                                                                         |             |                       |          |           |        |
| Variable<br>modifications            | AB_old_ICATd0 (C)<br>AB_old_ICATd8 (C)<br>Acetyl (K)<br>Acetyl (N-term)<br>Amide (C-term) |             |                       |          |           |        |
| Show all mods.                       |                                                                                           |             |                       |          |           |        |
| ICAT                                 | (MS/MS only)                                                                              |             |                       |          |           |        |
| Peptide tol. ±                       | 1.2 Da 💌                                                                                  |             |                       |          |           |        |
| MS/MS tol. ±                         | 0.6 Da 💌                                                                                  |             |                       |          |           |        |
| Peptide charge                       | 1+ 💌                                                                                      |             |                       |          |           |        |
| Monoisotopic                         | ⊙ Average ○                                                                               |             |                       |          |           |        |
| Data format                          | Mascot generic 🛛 👻 (MS/MS only)                                                           |             |                       |          |           |        |
|                                      |                                                                                           |             |                       |          | 🧐 Intern  | et     |

Check the box for Show all mods, then choose Save. This still sets the default state of the checkbox in Mascot 2.3, but we decided to place the checkbox on the search form, so as to make it easier to swap between the short and long lists.




It is extremely important that you do not choose more than the absolute minimum number of variable modification in a search. We talked about this in an earlier presentation, but it is worth repeating.

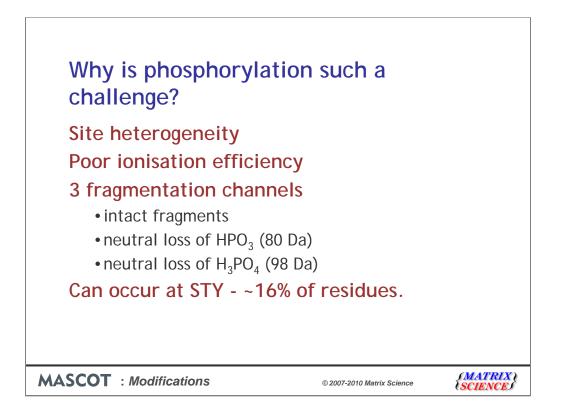
Variable or differential or non-quantitative modifications are expensive, in the sense that they increase the time taken for a search and reduce its specificity. This is because the software has to permute out all the possible arrangements of modified and unmodified residues that fit to the peptide molecular mass. As more and more modifications are considered, the number of combinations and permutations increases geometrically. The socalled combinatorial explosion.

Some variable modifications are worse than others. Modifications that only apply to a terminus, especially if they only apply when particular residue is at the terminus, like pyroglu, make little difference to the number of peptides to be tested. The problem modifications are the ones that apply to residues in any position, especially if they apply to multiple residues, like phosphorylation.

Unless you have enriched the sample in a particular PT-mod, e.g IMAC for phosphopeptides, it is usually not a good idea to try and catch PT-mods in a first pass search. Better to use a second pass search, which we call an error tolerant search, to catch the low abundance mods. We will come back to this later.



To illustrate this point. This search of a single MS/MS spectrum, using one variable mod, gives a nice, statistically significant match.

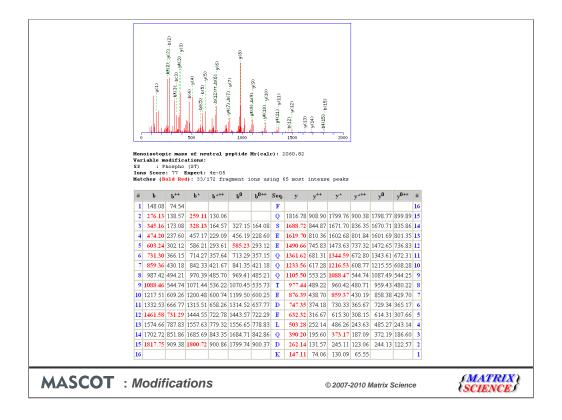

If the search is repeated with 8 mods, the match is the same, with an identical score, but now it is barely significant.

All of these mods have effectively increased the size of the database by a factor of 30

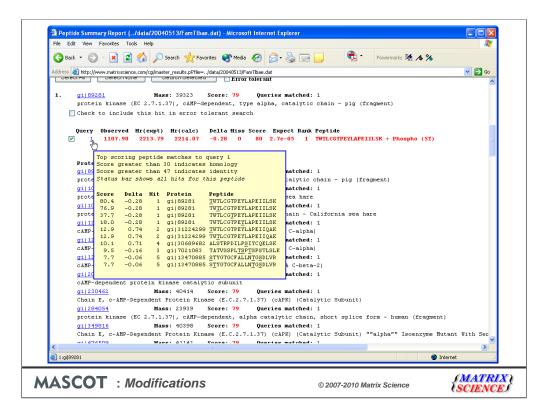
What's worse, the search takes over 10 times as long!

So, use variable mods sparingly. You'll get better results and faster.

By the way, the yellow region in the histogram indicates scores above the homology but below the identity thresholds. You will only see these regions highlighted in an MS/MS search report if it is a search of a single spectrum.

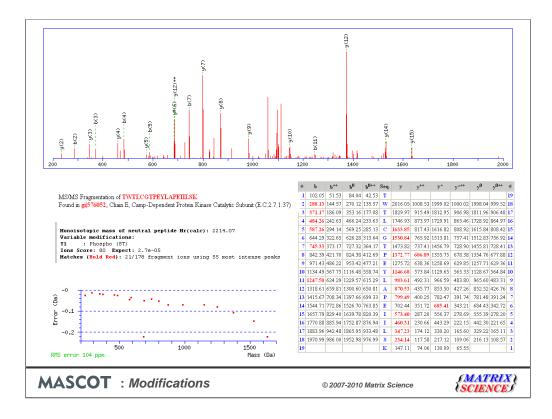



Of all post-translational modifications, phosphorylation is one of the most interesting and also one of the most difficult. Why is it such a challenge?

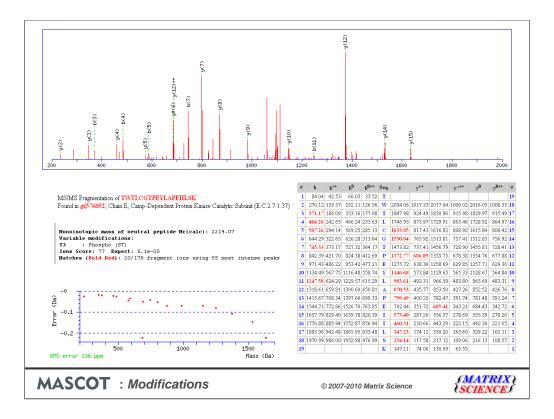

| Address Address Huts://www.matriceance.com/cg/master_results.ph?le=/dsta/20040513/FamTub4m.dat  Peptide Summary Report  FormatAs Peptide Summary  FormatAs Peptide Summary  FormatAs Peptide Summary  FormatAs Peptide Summary  Significance threshold p< 0.05 Max. number of his 20  Standard scoring  MudPTI scoring  Ins score cut-off  Standard scoring  Suppress pop-ups  Soft unassigned Decreasing Score  Require bold red  SelectAll SelectNone Search Selected  Error tolerant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u> </u>    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| Format As       Peptide Summary       Help         Significance threshold p<       0.05       Max. number of hits 20         Standard scoring ③ MudPIT scoring ③ Ions score cut-off ④       Show sub-sets □         Show pop-ups ④ Suppress pop-ups ④ Sort unassigned Decreasing Score ▼ Require bold red □                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |
| Significance threshold p< 0.05 Max. number of hits 20 Standard scoring $\odot$ MudPTT scoring $\bigcirc$ Ions score cut-off $\bigcirc$ Show sub-sets $\Box$ Show pop-ups $\odot$ Suppress pop-ups $\bigcirc$ Sort unassigned Decreasing Score $\checkmark$ Require bold red                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |
| Significance threshold p< 0.05 Max. number of hits 20 Standard scoring $\odot$ MudPTT scoring $\bigcirc$ Ions score cut-off $\bigcirc$ Show sub-sets $\Box$ Show pop-ups $\odot$ Suppress pop-ups $\bigcirc$ Sort unassigned Decreasing Score $\checkmark$ Require bold red                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |
| Standard scoring ⊙ MudPIT scoring ○ Ions score cut-off 0       Show sub-sets □         Show pop-ups ⊙ Suppress pop-ups ○ Sort unassigned Decreasing Score ▼ Require bold red □                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |
| Show pop-ups ③ Suppress pop-ups ③ Sort unassigned Decreasing Score 💌 Require bold red 🗌                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |
| Select All Select None Search Selected Error tolerant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |
| 1. <u>KBBOA2</u> Mass: 25091 Score: 77 Queries matched: 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |
| beta-casein precursor - bovine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |
| Check to include this hit in error tolerant search                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |
| Query Observed Mr(expt) Mr(calc) Delta Miss Score Expect Rank Peptide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |
| ✓ 1 1031.40 2060.78 2060.82 -0.04 0 77 6.2e-05 1 FQSEEQQQTEDELQDK + Ph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | tospho (ST) |
| <u>۳</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |
| Top scoring peptide matches to query 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |
| Prot Score greater than 35 indicates homology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
| OPSE Score greater than 47 indicates identity ries matched: 1<br>Beta Status bar shows all hits for this peptide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |
| beca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |
| JC13 ries matched: 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |
| JC13<br>beta Score Delta Hit Protein Peptide ries matched: 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |
| beta Score Delta Hit Protein Peptide<br>76.6 -0.04 1 KBBOA2 FQSEEQQQTEDELQDK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |
| Score         Delta         Hit         Protein         Peptide           beta         76.6         -0.04         1         KHB0A2         FOGEEQOQTEDELOOK         ress matched:         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |
| Score         Delta         Kit         Protein         Peptide           beta         76.6         -0.04         1         KBB0A2 FQSEEQQ0TEDLQDK           AAB2         22.5         -0.04         1         KBB0A2 FQSEEQQ0TEDLQDK         ries matched: 1           \$672         18.1         -0.19         2         604453         CLSLSKQVDLFEETIEK         ries                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |
| Score         Delta         Hit         Protein Peptide           beta         76.6         -0.04         1         RB002 FOGEEQOQTEDELOOK         ris matched: 1           ALE2         22.5         -0.04         1         RB002 FOGEEQOQTEDELOOK         ris matched: 1           S672         18.1         -0.19         2         G94453         CLSISKOUTEETIEK         ris matched: 1           AAA3         17.9         -0.21         3         070059         LTDIKLITYPETIEK         ris matched: 1           Browc         13.7         -0.71         4         OFVIND CLASCETHINGEROAK         ris matched: 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |
| Score         Delta         Hit         Protein Peptide           beta         Score         Delta         Hit         Protein Peptide           ABE2         22.5         -0.04         I         HBOA2 FOGEROQCTEDELOOK         ries matched: 1           S672         18.1         -0.19         2         G4453         ClisikgWorlFETIEK         ries matched: 1           ALA3         17.9         -0.21         3         Q7QU69         LILIKITFEETEK         ries matched: 1           BOVC         13.7         -0.17         4         QSWUB         QLAGGETITINGEGKQAK         ries matched: 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |
| Store         Delta         Hit         Protein Peptide           beta         560re         Delta         Hit         Protein Peptide           ALE2         22.5         -0.04         1         HB0A2 FOGEROQUTEDELOOK         ris matched: 1           SG72         18.1         -0.19         2 694453         CLSLRYDUFETTEK         ris matched: 1           ALA3         17.9         -0.21         3         Q70059         LTDIKLITPETTEK         ris matched: 1           BOVC         13.7         -0.71         4         GVPUND CLAGGETHUNGEKOAK         ris matched: 1           MA3         19.7         -0.23         5         059721         TSPERTWORFDOLKERT         ris matched: 1           MA3         9.9         -0.23         6         O7227 TSPERTWORFDOLKARK         ris matched: 1                                                                                                                                                                                                                                                                            |             |
| Score         Delta         Hit         Protein         Peptide           beta         76.6         -0.04         1         RB002 F0gEE0Q0TEDELQOK         rise matched: 1           ALE2         22.5         -0.04         1         RB002 F0gEE0Q0TEDELQOK         rise matched: 1           S672         18.1         -0.019         2         G4453         CLSLSKVDLFETTEK         rise matched: 1           ALA3         17.9         -0.21         3         070059         LTDJTKLTPEETDEK         rise matched: 1           BOVC         13.7         -0.20         5         669721         T0gFRDTVTVIGAKK         rise matched: 1           LMA3         9.9         -0.23         6         070227         TSPDATVVSTPGGDEART         rise matched: 1           EUCC         9.9         -0.17         7         QTRUE MENTILEDWERLEARK         rise matched: 1                                                                                                                                                                                                                |             |
| Score         Delta         Hit         Protein Peptide           beta         Score         Delta         Hit         Protein Peptide           ALE2         22.5         -0.04         I         HBOALF FOGEROQCTEDELOOK         ries matched: 1           S672         18.1         -0.19         2         684453         CLSISMQVDLPETTEK         ries matched: 1           ALA3         17.9         -0.21         3         GYQ169         LYLDIKLIYPETTEK         ries matched: 1           BONC         13.7         -0.25         5         69721         HIGSOFTINGEGRARK         ries matched: 1           ALA3         9.9         -0.33         6         GYU27         TSPBATTWYSFOGELARK         ries matched: 1           EVCC         9.9         -0.12         6         GYU27         TSPBATTWYSFOGELARK         ries matched: 1           EVCC         9.9         -0.12         6         HD1213         KTLIFFØVDPEDLENNKK         ries matched: 1                                                                                                                    |             |
| Score         Delta         Hit         Protein         Peptide           beta         76.6         -0.04         1         RB002 F0gEE0Q0TEDELQOK         rise matched: 1           ALE2         22.5         -0.04         1         RB002 F0gEE0Q0TEDELQOK         rise matched: 1           S672         18.1         -0.019         2         G4453         CLSLSKVDLFETTEK         rise matched: 1           ALA3         17.9         -0.21         3         070059         LTDJTKLTPEETDEK         rise matched: 1           BOVC         13.7         -0.20         5         669721         T0gFRDTVTVIGAKK         rise matched: 1           LMA3         9.9         -0.23         6         070227         TSPDATVVSTPGGDEART         rise matched: 1           EUCC         9.9         -0.17         7         QTRUE MENTILEDWERLEARK         rise matched: 1                                                                                                                                                                                                                |             |
| Score         Delta         Hit         Protein Peptide           beta         76.6         -0.04         1         RBS02 F0SEEQOQTEDELOOK           ABE2         22.5         -0.04         1         RBS02 F0SEEQOQTEDELOOK         ries matched: 1           S672         18.1         -0.19         2 694453         CLSLSKYDUFEFTEK         ries matched: 1           AAA3         17.9         -0.21         3         070U68         LYLDIKLIYPEETDEK         ries matched: 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |
| Score         Delta         Hit         Protein Peptide           beta         76.6         -0.04         1         RBS02 FQSEEQQCTEDELQOK           ABE2         22.5         -0.04         1         RBS02 FQSEEQQCTEDELQOK         ries matched: 1           S672         18.1         -0.019         2         G4455         CLSLSKOV/DEFETIEK         ries matched: 1           AAA3         17.9         -0.21         3         Q7QU69         LYLDIKLIYPEETDEK         ries matched: 1           BOVC         13.7         -0.17         4         QSVPU0         QLASGYTINGEGKQAK         ries matched: 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |
| Score         Delta         Hit         Frotein Peptide           beta         Score         Delta         Hit         Frotein Peptide           ABE         22.5         -0.04         1         KBBOA2 FOGEEQOQTEDELOOK         rise matched: 1           SS72         16.1         -0.19         2         Get455         CLSLSKOVDEFETIEK         rise matched: 1           ALA3         17.9         -0.21         3         Q70059         LVDIKLITPETETEK         rise matched: 1           BOVC         13.7         -0.17         4         GYDVBO LAGOETHINGEOKOAK         rise matched: 1           ALA3         9.9         -0.23         5         G9722 TSPJETVENVFORDERT         rise matched: 1                                                                                                                                                                                                                                                                                                                                                                              |             |
| Score         Delta         Hit         Protein Peptide           beta         Score         Delta         Hit         Protein Peptide           ALE2         22.5         -0.04         1         KBBOA2 FOGERCOQTEDELOOK         rise matched: 1           S672         18.1         -0.19         2         Get4455         CLSLSKOUTEELOOK         rise matched: 1           ALA3         17.9         -0.21         3         Q70059         LTDIKLITPETEDEK         rise matched: 1           BOVC         13.7         -0.17         4         GYPUND GLAGGETENVOROKAK         rise matched: 1           BOVC         10.7         -0.23         5         G9722.7         TSPDITVVVGROKAK         rise matched: 1           ALM3         9.9         -0.23         6         G9722.7         TSPDITVVS/FG0EART         rise matched: 1                                                                                                                                                                                                                                               |             |
| Score         Delta         Hit         Protein Peptide           beta         Score         Delta         Hit         Protein Peptide           ALE2         22.5         -0.04         1         KBBOA2 FOGEEQOQTEDELOOK         rise matched: 1           S672         18.1         -0.019         2         GetAS5         CLLSKOVEFEPTEK         ries matched: 1           ALA3         17.9         -0.21         3         070059         LVLDIKLIVPEEDEK         ries matched: 1           BOVC         13.7         -0.17         4         09VPUB OLASCEYENDOCKOK         ries matched: 1           BOVC         9.9         -0.23         5         069721         TMSPRSDIVTV/IOAK         ries matched: 1           BOVC         9.9         -0.27         7         OPRUENDKENTER         ries matched: 1                                                                                                                                                                                                                                                                      |             |
| Score         Delta         Hit         Protein Peptide           beta         Score         Delta         Hit         Protein Peptide           ALE2         22.5         -0.04         1         KBBOA2 FOGEEQOQTEDELOOK         rise matched: 1           S672         18.1         -0.019         2         GetAS5         CLLSKOVEFEPTEK         ries matched: 1           ALA3         17.9         -0.21         3         070059         LVLDIKLIVPEEDEK         ries matched: 1           BOVC         13.7         -0.17         4         09VPUB OLASCEYENDOCKOK         ries matched: 1           BOVC         9.9         -0.23         5         069721         TMSPRSDIVTV/IOAK         ries matched: 1           BOVC         9.9         -0.27         7         OPRUENDKENTER         ries matched: 1                                                                                                                                                                                                                                                                      |             |
| Score         Delta         Hit         Protein Peptide           beta         Score         Delta         Hit         Protein Peptide           ALE2         22.5         -0.04         1         KBBOA2 FOGEEQOQTEDELOOK         rise matched: 1           S672         18.1         -0.019         2         GetAS5         CLLSKOVEFEPTEK         ries matched: 1           ALA3         17.9         -0.21         3         070059         LVLDIKLIVPEEDEK         ries matched: 1           BOVC         13.7         -0.17         4         09VPUB OLASCEYENDOCKOK         ries matched: 1           BOVC         9.9         -0.23         5         069721         TMSPRSDIVTV/IOAK         ries matched: 1           BOVC         9.9         -0.27         7         OPRUENDKENTER         ries matched: 1                                                                                                                                                                                                                                                                      |             |
| Score         Delta         Hit         Protein Peptide           beta         Score         Delta         Hit         Protein Peptide           AAE2         22.5         -0.04         1         KBBOA2 FOGEEQOQTEDELOOK         riss matched: 1           SG72         18.1         -0.019         2         GetAS5         CLEASKOPLEFETEK         riss matched: 1           AAA3         17.9         -0.21         3         070059         LIDIKLITYPETEDEK         riss matched: 1           BOVC         13.7         -0.21         3         070059         LIDIKLITYPETEDEK         riss matched: 1           BOVC         10.7         -0.20         5         069721         TMSTPRSIVITVUIGAUK         riss matched: 1           BOVC         9.9         -0.23         6         070227         TSPDATVWSFPGDEARTR         riss matched: 1           BOVC         9.9         -0.17         7         07RULUS MINITLAND KELADKA         riss matched: 1                                                                                                                       |             |
| Score         Delta         Hit         Protein Peptide           beta         Score         Delta         Hit         Protein Peptide           ALB2         22.5         -0.04         1         KBBOA2 FQSEEQOQTEDELOOK         riss matched: 1           S672         18.1         -0.19         2         G84453         CLSLSKOVDLFEETIEK         riss matched: 1           ALA3         17.9         -0.21         3         Q70069         L'LDITNITEDEX         riss matched: 1           BOVC         13.7         -0.17         4         QSVPUB         QLAGOETHINOEOKOAK         riss matched: 1           BOVC         10.7         -0.20         5         GS9721         TypESPRSDTVVVTVGADK         riss matched: 1           BOVC         9.9         -0.23         6         QV227         TSPDATVVVSPPOGEARTR         riss matched: 1           BOVC         9.9         -0.17         7         Q7RLU6         MEILDENDMELAGOK         riss matched: 1           A322         3.6         -0.12         8         AB1213         KT_1PEPEDENXOK         riss matched: 1 |             |
| Score         Delta         Hit         Protein Peptide           beta         Score         Delta         Hit         Protein Peptide           ALB2         22.5         -0.04         1         KBBOA2 FQSEEQOQTEDELOOK         riss matched: 1           S672         18.1         -0.19         2         G84453         CLSLSKOVDLFEETIEK         riss matched: 1           ALA3         17.9         -0.21         3         Q70169         L'LDITNITEDEX         riss matched: 1           BOVC         13.7         -0.17         4         QSVPUB         QLAGOETHINOEOKOAK         riss matched: 1           BOVC         10.7         -0.20         5         G69721         TypEFRSDTVVVTGADK         riss matched: 1           BOVC         9.9         -0.23         6         QV227         TSPDATVVVSPPOGEARTR         riss matched: 1           BOVC         9.9         -0.17         7         Q7RLU6         MEILDENDDKELAGOK         riss matched: 1           A322         3.6         -0.12         8         AB1213         KT_1PEPEDENXOK         riss matched: 1  |             |

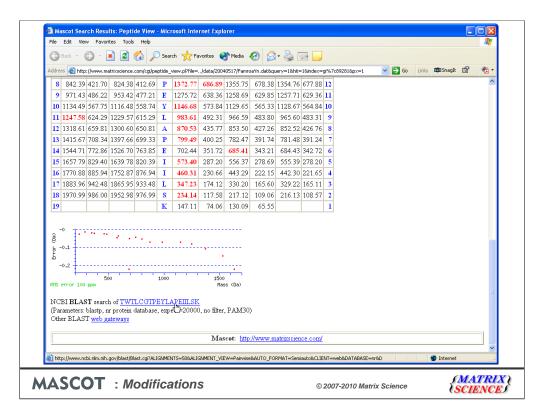
Lets look at an example or two.

One of the most common phosphopeptides comes from the milk protein, beta casein. There are two potential phosphorylation sites, S and T, but only one is modified. Because the two sites are widely separated, there is no ambiguity, even if the spectrum is not the greatest.




Beautiful spectrum; long run of y ions; move site to T9 and many matches would disappear

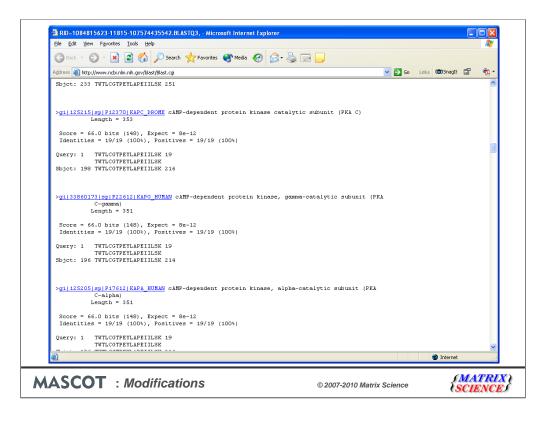




However, casein peptides are unusually easy to analyse. Here is a more typical example of what you can expect to find - a strong match to a phosphopeptide from a protein kinase.

There is little to choose in terms of score between having the phosphate on T1 or T3. We just can't say which site is modified, or whether there is a mixture of both isoforms. But, we can be very confident it is not on T7 or Y10 because the score drops dramatically



We can see why there is little difference in score between placing the phosphate on T1 or T3. There is just one extra matched peak, and in probability terms, there isn't a huge difference between 20 matches using 55 experimental peaks and 21. However, if you had to choose one or the other, you'd probably go for T1



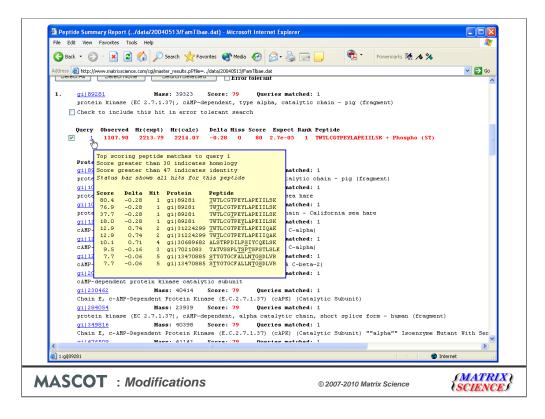



When there is ambiguity like this, the smart thing to do is to look for additional evidence. One option is to follow the link at the bottom of the peptide view report and run a Blast search of this peptide

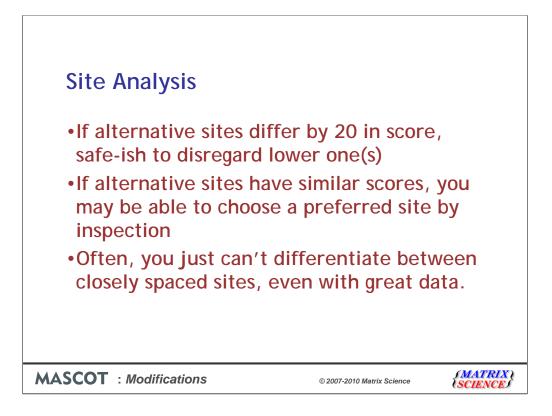
| A NCBI Blast - Microsoft Internet Explorer                                                              |                                     |                |                |
|---------------------------------------------------------------------------------------------------------|-------------------------------------|----------------|----------------|
| File Edit View Favorites Tools Help                                                                     |                                     |                | <i></i>        |
| 🔇 Back = 🕥 = 🗷 🙆 🏠 🔎 Search 👷 Favorites 🜒 Media 🚱 😥 - 🌺 🖼                                               | • 📴                                 |                |                |
| Address 🕘 http://www.ncbi.nlm.nih.gov/blast/Blast.cgi?ALIGNMENTS=508ALIGNMENT_VIEW=Pairwise8AUTO_FORMAT | =Semiauto&CLIENT=web&DATAE 💌 🄁 Go 🛛 | Links 🛱 SnagIt | 🖆 🔹 •          |
| NCBI protein-protein BLAST<br>Nucleotide Protein Translations Retrieve results for an F                 |                                     |                | ~              |
| TWTLCGTPEYLAPEIILSK<br>Szarch                                                                           | X                                   |                |                |
| Set subsequence From: To:                                                                               |                                     |                |                |
| Do CD-Starch path<br>path<br>pdb<br>Now: env_nr<br>month                                                | _                                   |                |                |
| Options for advanced blasting                                                                           |                                     |                |                |
| Link by entry                                                                                           | ×                                   |                |                |
|                                                                                                         |                                     | Internet       | ×              |
| ASCOT : Modifications                                                                                   | © 2007-2010 Matrix Science          | l.             | MATR<br>SCIENC |

Choose Swiss-Prot as the database, because we want a database with good annotations




Lots of identity matches to this very common protein. Choose the relevant species, in this case human.

|                          | iss-Prot: P22612 - Microsoft Internet Explorer                  |                                            |
|--------------------------|-----------------------------------------------------------------|--------------------------------------------|
| File Edit View Favori    |                                                                 | - W -                                      |
|                          | xy.org/cgi-bin/niceprot.pl?KAPG_HUMAN                           | 🖌 🗾 🖉 🛃 🐨 Links 🗰 Snagit 😭 🐑 -             |
| Features                 |                                                                 |                                            |
| Feature tabl             | e viewer                                                        |                                            |
| Key From<br>INIT_MET O   | To Length Description                                           |                                            |
| LIPID 1                  | <ol> <li>N-myristoyl glycine (By similarity).</li> </ol>        |                                            |
| DOMAIN 43                | 297 255 Protein kinase.<br>57 9 MTP (By similarity).            |                                            |
| NP_BIND 49<br>BINDING 72 | 57 9 ATP (By similarity).<br>72 ATP (By similarity).            |                                            |
| ACT_SITE 166             | 166 Proton acceptor (By similarity).                            |                                            |
| MOD_RES 197              | $\frac{197}{197} = T3$ Phosphothreonine (by autocatalysis) (1   | By similarity).                            |
| MOD_RES 338              | 138 Phosphoserine (by autocatalysis) (By s                      |                                            |
| CONFLICT 267             | 167 H -> D (in Ref. 1).                                         |                                            |
| CONFLICT 344             | $A \rightarrow P$ (in Ref. 3).                                  |                                            |
| Sequence information     | 11                                                              |                                            |
| Length: 350 AA           | Molecular weight: 40303 Da CRC64: 4CA401983691                  | B8D3B [This is a checksum on the sequence] |
| 10                       | 20 30 40 50 60                                                  |                                            |
| GNAPAKKDTE OEESV         | I I I I I I I I I I I I I I I I I I I                           |                                            |
|                          |                                                                 |                                            |
| 70                       | 80 90 100 110 120                                               |                                            |
| RHQETGGHYA MKILN         | KOKVV KMKQVEHILN EKRILQAIDF PFLVKLQFSF KDNSYLYLVN               |                                            |
| 100                      |                                                                 |                                            |
| 130                      | 140 150 160 170 180                                             |                                            |
| EYVPGGEMFS RLORV         | SRFSE PHACFYAAQV VLAVQYLHSL DLIHRDLKPE NLLIDQQGYL               |                                            |
| 190                      | 200 210 220 230 240                                             |                                            |
|                          | <u>*                                     </u>                   |                                            |
| QVTDFGFAKR VKGFT         | WTLCG TPEYLAPEII LSK <mark></mark> YNKAVD WWALGVLIYE MAVGFPPFYA |                                            |
|                          |                                                                 | ▲                                          |
| e                        |                                                                 | S Internet                                 |
| MASCOT                   | : Modifications                                                 | © 2007-2010 Matrix Science                 |

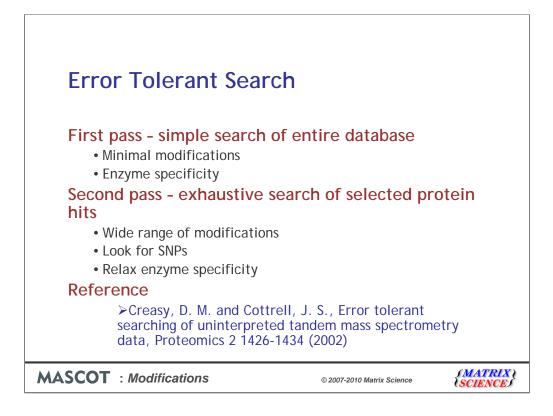

And hop over to Expasy to see the full text for this entry. Here is the peptide.

According to Swissprot, the phosphate is on T3, not T1

So, either Swiss-Prot is wrong or the extra match in the b series is spurious. I've no idea which. But, this does illustrate how easy it is to over-interpret noisy MS data.



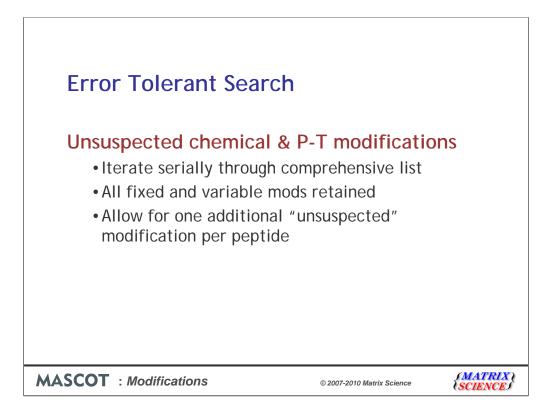
The Mascot score reminds us that there is little to choose between T1 and T3. All we can say with confidence is that the phosphate is on one or the other ... or maybe there is a mixture.



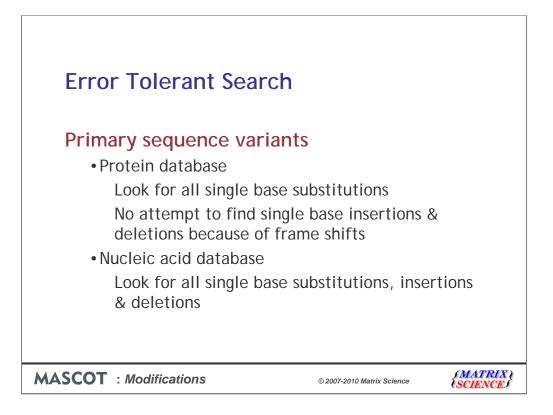

These are our suggested guidelines when using Mascot for site analysis:

If alternative sites differ by 20 in score, safe-ish to disregard lower one(s)

If alternative sites have similar scores, you may be able to choose one by inspection. But, be careful ... one peak is just one peak

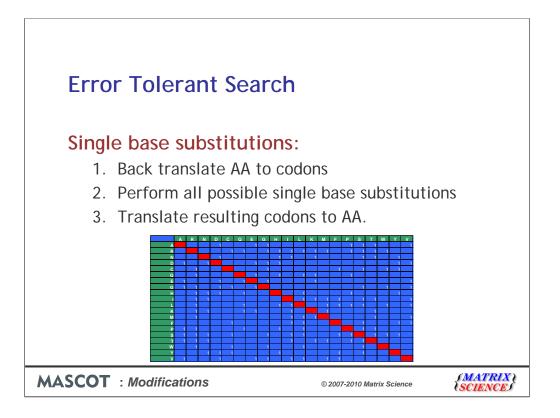

Often, you just can't differentiate between adjacent sites, even with great data.



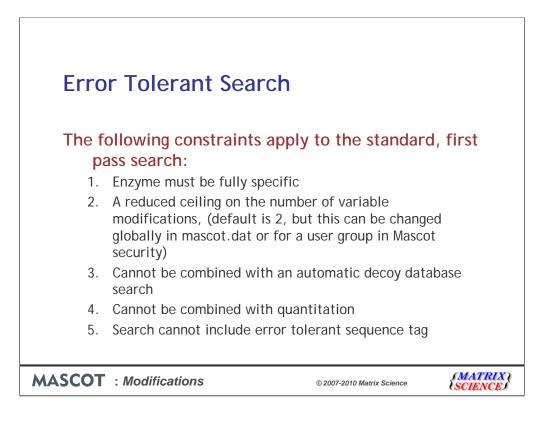

Now, back to the challenge of finding PT modifications. There are many hundreds of modifications in Unimod, yet I've emphasised the importance of using the minimum number of variable modifications in a search. So, how are we supposed to find unusual modifications?

If you are searching uninterpreted MS/MS data, the efficient way to find unusual modifications, as well as variations in the primary sequence, is a two pass search. The first pass search is a simple search of the entire database with minimal modifications. The protein hits found in the first pass search are then selected for an exhaustive second pass search. During this second pass search, we can look for all possible modifications, sequence variants, and non-specific cleavage products.

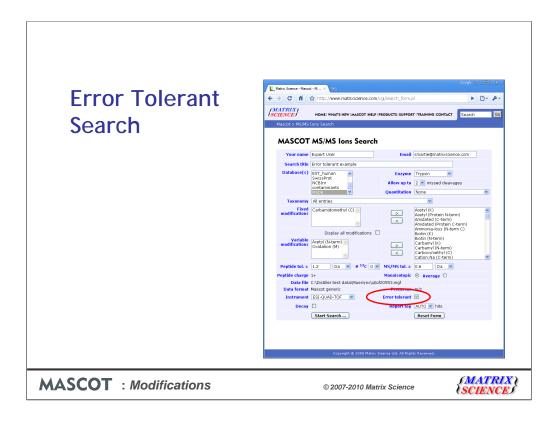
Because only a handful of entries are being searched, search time is not an issue. The down side is that it is difficult to apply any kind of threshold to the results, or calculate expectation values, because the entries being searched have been pre-selected.



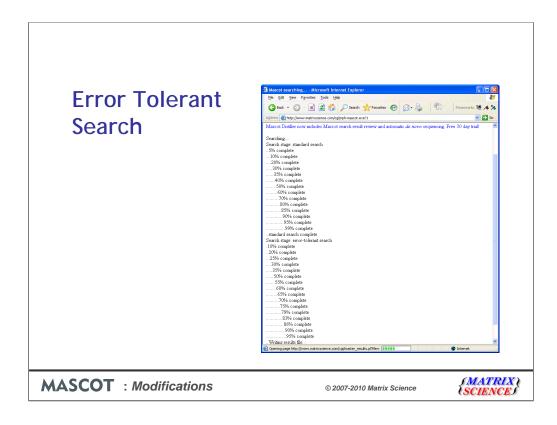

For modifications, an error tolerant search looks for one unsuspected modification per peptide in addition to those mods specified as fixed or variable. This is sufficient because it will be very rare to get two unsuspected mods on a single peptide




The error tolerant search also looks for sequence variants, such as single nucleotide polymorphisms (SNPs) or sequencing errors.


For a protein database, we can't look for the consequences of inserted or deleted bases, because these give rise to frame shifts, and the entire sequence changes from that point on.



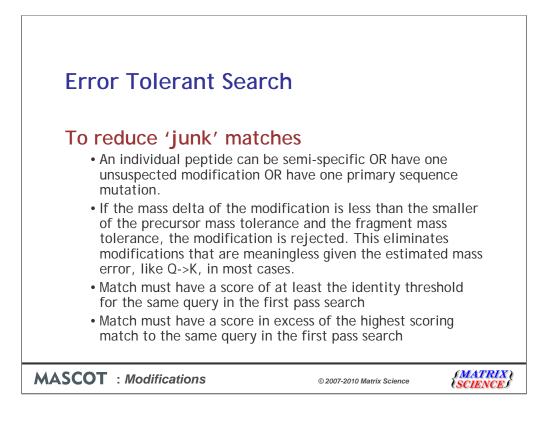

With a protein database, we don't just look for all possible residue substitutions. Many of these simply don't happen in nature. The observed substitutions are those that correspond to base substitutions in the DNA.



There are some constraints on the standard, first pass search



Otherwise, submitting the search is just like submitting a standard search except that you check the Error Tolerant Checkbox




You see two sets of progress reports

| Peptide               | e Summa    | ary Report (Er       | ror tolerant ex        | xample) - Micro        | osoft Intern     | et Exp    | lorer       |                |      |                                                                                                                                    |
|-----------------------|------------|----------------------|------------------------|------------------------|------------------|-----------|-------------|----------------|------|------------------------------------------------------------------------------------------------------------------------------------|
| File Ed               | it View    | Favorites To         | ols Help               |                        |                  |           |             |                |      |                                                                                                                                    |
| C Bad                 | k • 🗲      | ) - 💌 💋              | ) 🏠 🔎 si               | earch 👷 Favo           | rites 🧭          | 8.        | 2           | 🔁 -            | Po   | wermarks 🌃 👍 🏂                                                                                                                     |
| ddearc 🕻              | S          |                      |                        | results.pl?file=/o     |                  | No Conin  | e 44        | :              | 1    | × 3                                                                                                                                |
| uuress 🔏              | I netb:/// | www.matrixscienc     | ce.com/cgi/master_     | results.pr/me=/c       | 3aca/20070626    | Pouschie  | 5.0ac       |                |      |                                                                                                                                    |
| Select                | All        | Select None          | Searc                  | h Selected             | Error            | lava      |             |                |      |                                                                                                                                    |
|                       |            |                      |                        |                        | EII0             | orera     | m           |                |      |                                                                                                                                    |
|                       | AAA517     | 08 Mass:             | 56371 5                | Score: 782             | Queries          | , mat     | ched:       | 27 emPA        | a: 0 | .78                                                                                                                                |
|                       | HUMALP     | PA NID: - H          | Homo sapien:           |                        |                  |           |             |                |      |                                                                                                                                    |
|                       | Check      | to include           | this hit in            | n error tole           | erant seam       | ch        |             |                |      |                                                                                                                                    |
|                       |            |                      |                        |                        |                  |           |             |                |      |                                                                                                                                    |
|                       | uery<br>27 | Observed<br>462.6807 | Mr(expt)<br>923.3468   | Mr(calc)<br>923.5116   | Delta<br>-0.1649 | Miss<br>0 | Score<br>33 | Expect 1<br>16 | Rank | Peptide<br>R.FPYVALSK.T                                                                                                            |
|                       | 41         | 517.1760             | 1032.3375              | 1032.5604              | -0.2229          | 0         | 70          | 0.0036         | 3    | R. GSSIFGLAP6K.A                                                                                                                   |
|                       | 62         | 564.6804             | 1127.3463              | 1127.5764              | -0.2301          | 0         | 10          | 2.8e+03        | 6    | R. GFFLFVEGGR. I                                                                                                                   |
|                       | 65         | 567.6567             | 1133.2987              | 1133.5499              | -0.2511          | 0         | 44          | 1.1            | 1    | R.GNEVISVNNR.A + Oxidation (M)                                                                                                     |
|                       | 86         | 614.2001             |                        | 1226.6329              | -0.2473          | 0         | 28          | 41             | 2    | K.LGPEIPLAMDR.F + Oxidation (M)                                                                                                    |
| <b>V</b>              | 100        | 653.2101             | 1304.4057              | 1304.6837              | -0.2780          | 0         | (87)        | 5.7e-05        | 1    | K. GNFQTIGLSAAAR.F                                                                                                                 |
| <b>V</b>              | 124        | 710.2235             | 1418.4324              | 1418.7154              | -0.2829          | 0         | 95          |                | 1    | K.GNFQTIGLSAAAR.F + Acetyl (N-term); [+72.0211 at N-term 6]                                                                        |
| <b>V</b>              | 126        | 726.1806             | 1450.3465              | 1450.6477              | -0.3011          | 0         | 73          | 0.0012         | 1    | R. NWYSDADVPASAR. Q                                                                                                                |
| <b>V</b>              | 133        | 499.1349             | 1494.3828              | 1494.6694              | -0.2866          | U         | 92          |                | 1    | L.DPSLMENTEAALR.L + 2 Uxidation (M)                                                                                                |
| <b>V</b>              | 145        | 526.1538             | 1575.4396              | 1575.7814              | -0.3418          | 0         | (61)        |                | 1    | R.ALTETIMEDDAIER.A + [-48.0000 at F8]                                                                                              |
| <b>V</b>              | 156        | 820.7283             | 1639.4420              | 1639.7763              | -0.3343          | 0         | 97          | 5.1e-06        | 1    | R.ALTETIMFDDAIER.A + Oxidation (M)                                                                                                 |
| <b>V</b>              | 165        | 841.2310             | 1680.4474              | 1680.8029              | -0.3554          | 0         | (75)        |                | 1    | R_ALTETIMFDDAIER.A + Oxidation (M); [+41.0266 at N-term A]                                                                         |
| <b>V</b>              | 170        | 864.2888             | 1726.5629              | 1726.9294              | -0.3664          | 0         | 44          | 0.9            | 1    | K.AYTVLLYGNGPGYVLK.D                                                                                                               |
| <b>V</b>              | 176        | 879.2425             | 1756.4705              | 1756.8420              | -0.3715          | 0         | 83          |                | 1    | G.IIPVEEENPDFWNR.E                                                                                                                 |
|                       | 204        | 956.2437             | 1910.4729              | 1910.8601              | -0.3872          | 0         | 29          | 28             | 3    | R.DSTLDPSLMEMTEAALR.L + 2 Oxidation (M)                                                                                            |
| <b>V</b>              | 208        | 975.8100             | 1949.6055              | 1950.0245              | -0.4190          | 0         | 85          | 6.6e-05        | 1    | K.HLIIFLGDGMGVSTVTAAR.I + Oxidation (M)                                                                                            |
| <b>V</b>              | 209        | 976.2340             | 1950.4534              | 1950.8555              | -0.4021          | 0         | (27)        | 42             | 1    | K.DGARPDVTESESGSPEYR.Q                                                                                                             |
| <b>V</b>              | 211        | 656.1752             | 1965.5039              | 1964.8712              | 0.6327           | 0         | (72)        |                | 1    | K.DGARPDVTESESGSPEYR.Q + [+14.0157 at T8]                                                                                          |
| _                     | 213        | 664.5518             | 1990.6336              | 1991.0510              | -0.4174          | 0         | (58)        |                | 4    | K_NLIIFLGDGMGVSTVTAAR.I + Oxidation (M); [+41.0266 at N-term N]                                                                    |
| <b>V</b>              |            | 1001.2027            | 2000.3908              | 2000.8058              | -0.4150          | 0         | (65)        | 0.0069         | 1    | R.MGTPDPEYPDDYSQGGTR.L + Oxidation (M)                                                                                             |
| <b>V</b>              | 217        | 667.8046             | 2000.3919              | 2000.8058              | -0.4139          | 0         | 70          | 0.002          | 1    | R.MGTPDPEYPDDYSQGGTR.L + Oxidation (M)                                                                                             |
| <b>V</b>              | 218        | 670.1561             | 2007.4466              | 2007.8770              | -0.4304          | 0         | 75          |                | 1    | K_DGARPDVTESESGSPEYR.Q + [+57.0215 at N-term D]                                                                                    |
| <b>V</b>              | 222        | 681.8205             | 2042.4397              | 2041.8324              | 0.6073           | 0         | (61)        |                | 1    | R.MGTPDPEYPDDYSQGGTR.L + Acetyl (N-term); Oxidation (M); [-0.9840 at E7]                                                           |
| <b>V</b>              | 252<br>253 | 784.5440             | 2350.6103<br>2367.6341 | 2351.1030<br>2368.1295 | -0.4927          | 0         | (69)        | 7.6e-06        | 1    | R.QQSAVPLDEETHAGEDVAVFAR.G + [-17.0265 at N-term Q]                                                                                |
| <ul> <li>✓</li> </ul> | 253        | 790.2187<br>809.2208 | 2367.6341 2424.6406    | 2368.1295              | -0.4954          | 0         | 94<br>(66)  | 7.0e-ub        | 1    | R.QQSAVPLDEETHAGEDVAVFAR.G<br>R.QQSAVPLDEETHAGEDVAVFAR.G + [+57.0215 at N-term Q]                                                  |
|                       | 275        | 809.2208<br>920.5878 | 2424.6406              |                        | -0.5104          | 0         | (66)        |                | 1    | R.QUSAVFLDEETHAGEDVAVFAR.6 + [+37.0215] at N-term Q]<br>R.QEGCQDIATQLISNMDIDVILGGGR.K + Acetyl (N-term); 0xidation (M); [-0.9476 a |
| <b></b>               | 415        | 920.3078             | 2/30./413              | 2139.3382              | -0.010/          | U         | 90          |                | -    | N_QD0/QUINIQLIONEDIDULUOOK.K + AUCUYL (N=UCIN); UXIGGIION (H); [-0.9476 at                                                         |
|                       |            |                      |                        |                        |                  |           |             |                |      |                                                                                                                                    |
|                       |            |                      |                        |                        |                  |           |             |                |      | 🖓 🕷 Internet                                                                                                                       |
| _                     | _          | _                    | _                      | _                      | _                | _         | _           | _              | _    | Çu 🖉 internet                                                                                                                      |
| Μ                     | AS         | CO                   | <b>:</b> <i>M</i>      | odific                 | ation            | s         |             |                |      | © 2007-2010 Matrix Science                                                                                                         |

And here is the first hit of the results report. The additional matches, found in the error tolerant search, are the ones without Expect values. This is because they have been obtained by selecting a small number of database entries and beating them into submission with non-specificity, substitutions and a long list of modifications. This makes it difficult to apply any meaningful measure of statistical significance.

One of these, query 133, is a simple, non-specific peptide with a very good score. There's another example for query 176. The error tolerant search is a much better way of picking up non-specific peptides than searching the entire database with semi-trypsin or no enzyme. We only fail to get such matches in an error tolerant search if there are no matches to the protein in the first pass search. However, you have to ask yourself whether you would believe a protein hit in which the only peptide match was non-specific. I think the answer is no.



The matches from an error tolerant search are aggressively filtered to remove junk matches

| ie Li                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | lit View      |                       |                        |                        |                    | -          | _            | : 🔿     |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------------------|------------------------|------------------------|--------------------|------------|--------------|---------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 🌏 Ba                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | * • €         | ) - 💌 💈               | ) 🏠 🔎 Si               | earch 🤺 Favo           | rites 🧭            | <b>⊘</b> ∙ | 4            | 🔁 •     | Po    | wermarks 🌃 🛧 🇏                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| idress                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ) http://     | www.matrixsciend      | e.com/cgi/master       | results.pl?file=/o     | data/20070626,     | FoGcrie    | S.dat        | -       |       | Image: Second s |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |                       |                        |                        |                    |            |              |         |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Selec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | : All         | Select None           | Searc                  | h Selected             | Error              | olera      | nt           |         |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |                       |                        |                        |                    |            |              |         |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <u>AAA517</u> |                       |                        | Score: 782             | Queries            | mat        | ched:        | 27 emPA | AI: 0 | ).78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |                       | iomo sapien:           |                        |                    |            |              |         |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Check         | to include            | this hit in            | n error tole           | erant sear         | ch         |              |         |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Query         | Observed              | Mr(expt)               | Mr(calc)               | Delta              | diee       | Score        | Expect  | Dank  | Peptide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 27            | 462.6807              | 923.3468               | 923.5116               | -0.1649            | 0          | 33           | 16      | 1     | R.FPYVALSK.T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 41            | 517.1760              | 1032.3375              | 1032.5604              | -0.2229            | 0          | 70           | 0.0036  | 3     | R.GSSIFGLAPGK.A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 62            | 564.6804              | 1127.3463              | 1127.5764              | -0.2301            | 0          | 10           | 2.8e+03 | 6     | R.GFFLFVEGGR.I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| <b>V</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 65            | 567.6567              | 1133.2987              | 1133.5499              | -0.2511            | 0          | 44           | 1.1     | 1     | R.GNEVISVANR.A + Oxidation (M)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 86            | 614.2001              | 1226.3856              | 1226.6329              | -0.2473            | 0          | 28           | 41      | 2     | K.LGPEIPLAMDR.F + Oxidation (M)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| <b>V</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 100           | 653.2101              | 1304.4057              | 1304.6837              | -0.2780            | 0          | (87)         | 5.7e-05 | 1     | K. GNFQTIGLSAAAR.F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <b>V</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 124           | 710.2235              | 1418.4324              | 1418.7154              | -0.2829            | 0          | 95           |         | 1     | K. <u>CNFQTIGLSAAAR.F</u> + Acetyl (N-term); [ <u>+72.0211</u> at N-term 6]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| <b>V</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 126           | 726.1806              | 1450.3465              | 1450.6477              | -0.3011            | 0          | 73           | 0.0012  | 1     | R.NWYSDADVPASAR.Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| <b>V</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 133           | 499.1349              | 1494.3828              | 1494.6694              | -0.2866            | U          | 92           |         | 1     | L.DPSLMENTEAALR.L + 2 Uxidation (M)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| <b>V</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 145           | 526.1538              | 1575.4396              | 1575.7814              | -0.3418            | 0          | (61)         |         | 1     | R.ALTETIMEDDAIER.A + [-48.0000 at F8]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| <b>V</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 156           | 820.7283              | 1639.4420              | 1639.7763              | -0.3343            | 0          | 97           | 5.1e-06 | 1     | R.ALTETIMFDDAIER.A + Oxidation (M)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <b>V</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 165           | 841.2310              | 1680.4474              | 1680.8029              | -0.3554            | 0          | (75)         |         | 1     | R_ALTETIMFDDAIER.A + Oxidation (M); [+41.0266 at N-term A]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| <b>V</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 170           | 864.2888              | 1726.5629              | 1726.9294              | -0.3664            | 0          | 44           | 0.9     | 1     | K.AYTVLLYGNGPGYVLK.D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| <b>~</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <u>176</u>    | 879.2425              | 1756.4705              | 1756.8420              | -0.3715            | 0          | 83           |         | 1     | G.IIPVEEENPDFWNR.E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <u>204</u>    | 956.2437              | 1910.4729              | 1910.8601              | -0.3872            | 0          | 29           | 28      | 3     | R.DSTLDPSLMEMTEAALR.L + 2 Oxidation (M)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| <b>V</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 208           | 975.8100              | 1949.6055              | 1950.0245              | -0.4190            | 0          | 85           | 6.6e-05 | 1     | K.NLIIFLGDGMGVSTVTAAR.I + Oxidation (M)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| <b>V</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 209           | 976.2340              | 1950.4534              | 1950.8555              | -0.4021            | 0          | (27)         | 42      | 1     | K.DGARPDVTESESGSPEYR.Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| <b>V</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 211           | 656.1752              | 1965.5039              | 1964.8712              | 0.6327             | 0          | (72)         |         | 1     | K.DGARPDVTESESGSPEYR.Q + [+14.0157 at T8]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 213           | 664.5518<br>1001.2027 | 1990.6336<br>2000.3908 | 1991.0510<br>2000.8058 | -0.4174<br>-0.4150 | 0          | (58)<br>(65) | 0.0069  | -     | K_NLIIFLGDGMGVSTVTAAR.I + 0xidation (M); [+41.0266 at N-term N]<br>R.MGTPDPEYPDDYSQGGTR.L + 0xidation (M)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| <ul> <li>✓</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 216<br>217    | 667.8046              | 2000.3908              | 2000.8058              | -0.4130            | 0          | (65)         | 0.0059  | 1     | R.MGTPDPEYPDDYSQUGTR.L + Oxidation (M)<br>R.MGTPDPEYPDDYSQGGTR.L + Oxidation (M)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Image: A state of the state | 218           | 670.1561              | 2000.3919              | 2000.8038              | -0.4304            | 0          | 75           | 0.002   | 1     | K.DGARPDVTESESGSPEYR.Q + [+57,0215 at N-term D]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 222           | 681.8205              | 2042.4397              | 2041.8324              | 0.6073             | 0          | (61)         |         | 1     | R.MGTPDPEYPDDYSQGGTR.L + Acet (N-term); 0xidation (M); [-0.9840 at E7]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.52          | 784.5440              | 2350.6103              | 2351.1030              | -0.4927            | 0          | (61)         |         | 1     | R.QQSAVPLDEETHAGEDVAVFAR.G + [Possible Assignments:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| <ul> <li>V</li> <li>V</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.53          | 790.2187              | 2367.6341              | 2368.1295              | -0.4954            | n          | 94           | 7.6e-06 | 1     | R.QQSAVFLDEETHAGEDVAVFAR.G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| <ul> <li>Image: Construction</li> <li>Image: Construction&lt;</li></ul>                                                                                                                                                                                                                                        | 2.60          | 809.2208              | 2424.6406              | 2425.1510              | -0.5104            | 0          | (66)         |         | 1     | R. OOSAVPLDEETHAGEDVAVFAR. 6 + [ Carbamidomethyl (N-term) [+57.0215]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 275           | 920.5878              | 2758.7415              |                        | -0.6167            | ō          | 90           |         | î     | Carbamidomethyl (D) [+57.0215]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |                       |                        |                        |                    | 1          |              |         | -     | Carboxymethyl (N-term) [+58.0055]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |                       |                        |                        |                    |            |              |         |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1.0005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 708 2:44      | H09647 3-C0115        | 103 4-512076 5-        | AAA51709 8:AAA         | 98616              |            |              |         |       | a Internet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1700 2.MP     | NOTO TO CASE          | 100 11012070 0.        |                        |                    | _          | _            |         | _     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |                       | -                      |                        |                    |            |              |         |       | (MATDIV)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |                       | <b>F</b> : M           | adifia                 | otion              | ~          |              |         |       | © 2007-2010 Matrix Science                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

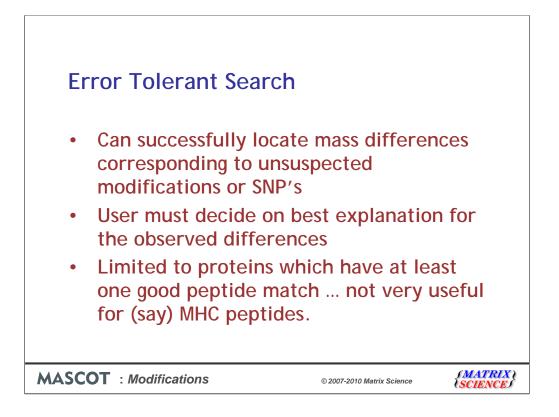
Take a look at the match to query 218. The mass tolerance for this search was fairly wide, so the observed mass difference could correspond to either carbamidomethylation or carboxymethylation at the N-terminus. Since this sample was alkylated with iodoacetamide, we would choose carbamidomethylation as the more likely suspect, especially as this brings the error on the precursor mass into line with the general trend, whereas carboxymethylation would give an error of +0.6 Da. The assignment to carbamidomethylation is also very believable, because this is a known artefact of over-alkylation. The same modification is found for query 260.

| ile Ed   | it View     | Favorites To         | ols Help             |                      |                  |         |             |              |             |                                                                            |
|----------|-------------|----------------------|----------------------|----------------------|------------------|---------|-------------|--------------|-------------|----------------------------------------------------------------------------|
| 🕒 Bac    | k • 6       | ) - 💌 💈              | ) 🏠 🔎 s              | earch 🤺 Favo         | rites 🧭          | 8.      | 2           | 🔁 -          | Po          | wermarks 🌃 👍 🏂                                                             |
| dress 👔  | http://     | www.matrixscienc     | e.com/cgi/master     | results.pl?file=/o   | lata/20070626.   | FoGcrie | S.dat       | ;            | 1           |                                                                            |
| 2        |             |                      |                      |                      |                  |         |             |              |             |                                                                            |
| Select   | All         | Select None          | Searc                | h Selected           | Error            | tolera  | nt          |              |             |                                                                            |
|          |             |                      |                      |                      |                  |         |             |              |             |                                                                            |
|          | AAA517      | 08 Mass              | 56371 :              | Score: 782           | Queries          | ; mat   | ched:       | 27 emPA      | <b>I:</b> 0 | 0.78                                                                       |
|          | HUMALP      | PA NID: - 1          | Homo sapien:         | -                    |                  |         |             |              |             |                                                                            |
|          | Check       | to include           | this hit is          | n error tole         | erant sear       | ch      |             |              |             |                                                                            |
|          |             |                      |                      |                      |                  |         |             |              |             |                                                                            |
|          | Juery<br>27 | Observed<br>462.6807 | Mr(expt)<br>923.3468 | Mr(calc)<br>923.5116 | Delta<br>-0.1649 | Miss    | Score<br>33 | Expect<br>16 | Rank        | Peptide<br>R.PPYVALSK.T                                                    |
|          | 41          | 517.1760             | 1032.3375            | 1032.5604            | -0.2229          | 0       | 70          | 0.0036       | 3           | R. GSSIFGLAPGK.A                                                           |
|          | 62          | 564.6804             |                      | 1127.5764            | -0.2229          | 0       | 10          | 2.8e+03      | 6           | R. GFFLFVEGGR. I                                                           |
|          | 65          | 567.6567             | 1133.2987            | 1133.5499            | -0.2511          | n       | 44          | 1.1          | 1           | R.GNEVISVMNR.A + Oxidation (M)                                             |
| <u>ت</u> | 86          | 614.2001             | 1226.3856            | 1226.6329            | -0.2473          | o       | 28          | 41           | 2           | K.LGPEIPLAMDR.F + Oxidation (M)                                            |
| <b>V</b> | 100         | 653.2101             | 1304.4057            | 1304.6837            | -0.2780          | 0       | (87)        | 5.7e-05      | 1           | K. GNFQTIGLSAAAR.F                                                         |
|          | 124         | 710.2235             | 1418,4324            | 1418,7154            | -0.2829          | 0       | 95          |              | 1           | K.GNFQTIGLSAAAR.F + Acetyl (N-term); [+72.0211 at N-term 6]                |
|          | 126         | 726.1806             | 1450.3465            | 1450.6477            | -0.3011          | 0       | 73          | 0.0012       | 1           | R. NWYSDADVPASAR. Q                                                        |
|          | 133         | 499.1349             | 1494.3828            | 1494.6694            | -0.2866          | U       | 92          |              | 1           | L.DPSLMENTEAALR.L + 2 Uxidation (M)                                        |
| <b>V</b> | 145         | 526.1538             | 1575.4396            | 1575.7814            | -0.3418          | 0       | (61)        |              | 1           | R.ALTETIMFDDAIER.A + [-48.0000 at F8]                                      |
| <b>V</b> | 156         | 820.7283             | 1639.4420            | 1639.7763            | -0.3343          | 0       | 97          | 5.1e-06      | 1           | R.ALTETIMFDDAIER.A + Oxidation (M)                                         |
| <b>V</b> | 165         | 841.2310             | 1680.4474            | 1680.8029            | -0.3554          | 0       | (75)        |              | 1           | R_ALTETIMFDDAIER.A + Oxidation (M); [+41.0266 at N-term A]                 |
| <b>V</b> | 170         | 864.2888             | 1726.5629            | 1726.9294            | -0.3664          | 0       | 44          | 0.9          | 1           | K.AYTVLLYGNGPGYVLK.D                                                       |
| <b>V</b> | 176         | 879.2425             | 1756.4705            | 1756.8420            | -0.3715          | 0       | 83          |              | 1           | G.IIPVEEENPDFWNR.E                                                         |
|          | 204         | 956.2437             | 1910.4729            | 1910.8601            | -0.3872          | 0       | 29          | 28           | 3           | R.DSTLDPSLMEMTEAALR.L + 2 Oxidation (M)                                    |
| <b>V</b> | 208         | 975.8100             | 1949.6055            | 1950.0245            | -0.4190          | 0       | 85          | 6.6e-05      | 1           | K.HLIIFLGDGMGVSTVTAAR.I + Oxidation (M)                                    |
| <b>V</b> | 209         | 976.2340             | 1950.4534            | 1950.8555            | -0.4021          | 0       | (27)        | 42           | 1           | K.DGARPDVTESESGSPEYR.Q                                                     |
| <b>V</b> | 211         | 656.1752             | 1965.5039            | 1964.8712            | 0.6327           | 0       | (72)        |              | 1           | K.DGARPDVTESESGSPEYR.Q + [+14.0157 at T8]                                  |
|          | 213         | 664.5518             | 1990.6336            | 1991.0510            | -0.4174          | 0       | (58)        |              | 4           | K_HLIIFLGDGMGVSTVTAAR.I + Oxidation (M); [ <u>+41.0266</u> at N-term N]    |
| <b>V</b> | 216         | 1001.2027            | 2000.3908            | 2000.8058            | -0.4150          | 0       | (65)        | 0.0069       | 1           | R.MGTPDPEYPDDYSQGGTR.L + Oxidation (M)                                     |
| <b>V</b> | 217         | 667.8046             | 2000.3919            | 2000.8058            | -0.4139          | 0       | 70          | 0.002        | 1           | R.MGTPDPEYPDDYSQGGTR.L + Oxidation (M)                                     |
| <b>V</b> | <u>218</u>  | 670.1561             | 2007.4466            | 2007.8770            | -0.4304          | 0       | 75          |              | 1           | K_DGARPDVTESESGSPEYR.Q + [+57.0215 at N-term D]                            |
| <b>V</b> | 222         | 681.8205             | 2042.4397            | 2041.8324            | 0.6073           | 0       | (61)        |              | 1           | R_MGTPDPEYPDDYSQGGTR.L + Acetyl (N-term); Oxidation (M); [-0.9840 at E7]   |
| <b>V</b> | 2.52        | 784.5440             | 2350.6103            | 2351.1030            | -0.4927          | 0       | (69)        |              | 1           | R_QQSAVPLDEETHAGEDVAVFAR.G + [-17.0265 at N-term Q]                        |
| <b>V</b> | 253         | 790.2187             | 2367.6341            | 2368.1295            | -0.4954          | 0       | 94          | 7.6e-06      | 1           | R.QQSAVPLDEETHAGEDVAVFAR.G                                                 |
| <b>V</b> | 260         | 809.2208             | 2424.6406            | 2425.1510            | -0.5104          | 0       | (66)        |              | 1           | R_QQSAVPLDEETHAGEDVAVFAR.6 + [+57.0 Possible Assignments:                  |
| <b>V</b> | 275         | 920.5878             | 2758.7415            | 2759.3582            | -0.6167          | 0       | 90          |              | 1           | R_QEGCQDIATQLISHMDIDVILGGGR.K + Acc<br>Gin->pyro-Glu (N-term Q) [-17.0265] |
|          |             |                      |                      |                      |                  |         |             |              |             |                                                                            |
|          |             |                      |                      |                      |                  |         |             |              |             |                                                                            |
| I:AAA51  | 708 2:AA    | H09647 3:CAJ15       | 5103 4:512076 5:     | AAA51709 8:AAA       | 98616            |         |             | _            |             | 🖓 🔮 Internet                                                               |
|          |             |                      | _                    |                      |                  |         |             |              |             | () ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )                                     |
|          |             | CO                   | E . AA               | odific               | ation            | ~       |             |              |             | © 2007-2010 Matrix Science                                                 |

Another easily believable assignment is pyro-Glu for the match to query 252.

| Peptid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | e Summa    | ary Report (Er       | ror tolerant e            | cample) - Micro        | osoft Intern       | et Exp     | lorer    |         |              |                                                                                                                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------------------|---------------------------|------------------------|--------------------|------------|----------|---------|--------------|-----------------------------------------------------------------------------------------------------------------|
| File Ec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | it View    | Favorites To         | ols Help                  |                        |                    |            |          |         |              | a de la companya de l |
| G Bac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | * • €      | ) - 💌 💈              | ) 🏠 🔎 Si                  | earch 🤺 Favo           | rites 🚱            | <b>@</b> • | 2        | 🔁 -     | Po           | wermarks 🌃 🛧 🛠                                                                                                  |
| Address                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ) http://w | www.matrixscienc     | ce.com/cgi/master_        | results.pl?file=/o     | data/20070626      | /FoGcrie   | s.dat    |         |              | 💌 🔁 🛛                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |                      |                           |                        |                    |            |          |         |              |                                                                                                                 |
| Select                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | All        | Select None          | Searc                     | h Selected             | Error              | tolera     | nt       |         |              |                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |                      |                           |                        |                    |            |          |         |              |                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | AAA517     |                      | : 56371 S<br>Homo sapiens | core: 782              | Queries            | s mat      | ched:    | 27 emPA | <b>I</b> : 0 | .78                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |                      |                           | ,<br>n error tole      | arant gaan         | ch         |          |         |              |                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CHECK      | co incidue           | chis hit ii               | I ELLOL COIR           | ranc sea           |            |          |         |              |                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Query      | Observed             | Mr(expt)                  | Mr(calc)               | Delta              | Miss       | Score    | Expect  | Rank         | Peptide                                                                                                         |
| <b>V</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 27         | 462.6807             | 923.3468                  | 923.5116               | -0.1649            | 0          | 33       | 16      | 1            | R.FPYVALSK.T                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 41         | 517.1760             | 1032.3375                 | 1032.5604              | -0.2229            | 0          | 70       | 0.0036  | 3            | R.GSSIFGLAPGK.A                                                                                                 |
| _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 62         | 564.6804             | 1127.3463                 | 1127.5764              | -0.2301            | 0          | 10       | 2.8e+03 | 6            | R.GFFLFVEGGR.I                                                                                                  |
| <b>V</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 65         | 567.6567             | 1133.2987                 | 1133.5499              | -0.2511            | 0          | 44       | 1.1     | 1            | R. GNEVISVMNR.A + Oxidation (M)                                                                                 |
| _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 86         | 614.2001             |                           | 1226.6329              | -0.2473            | 0          | 28       | 41      | 2            | K.LGPEIPLAMDR.F + Oxidation (M)                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 100        | 653.2101             |                           | 1304.6837              | -0.2780            | 0          | (87)     | 5.7e-05 | 1            | K. GNFQTIGLSAAAR. F                                                                                             |
| <b>V</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 124        | 710.2235             | 1418.4324                 | 1418.7154              |                    | 0          | 95       | 0 0010  | 1            | K.GNFQTIGLSAAAR.F + Acetyl (N-term); [+72.0211 at N-term 6]                                                     |
| ×<br>×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 126<br>133 | 726.1806<br>499.1349 |                           | 1450.6477<br>1494.6694 | -0.3011<br>-0.2866 | 0          | 73<br>92 | 0.0012  | 1            | R.HWYSDADVPASAR.Q<br>L.DPSLMEMTEAALR.L + 2 Oxidation (M)                                                        |
| <ul> <li>Image: Construction</li> <li>Image: Construction&lt;</li></ul>                                                                                                                                                                                                                                        | 145        | 526.1538             |                           | 1575.7814              | -0.3418            | 0          | (61)     |         | 1            | R.ALTETINFDDAIER.A + [-48.0000 at F8]                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 156        | 820.7283             | 1639.4420                 | 1639.7763              | -0.3343            | 0          | 97       | 5.1e-06 | - î          | R.ALTETINFDDAIER.A + 0xidation (M)                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 165        | 841.2310             | 1680.4474                 | 1680.8029              | -0.3554            | n          | (75)     | 5.10 00 | î            | R.ALTETINFDDAIER.A + Oxidation (N); [+41.0266 at N-term A]                                                      |
| Image: A state of the state | 170        | 864.2888             | 1726.5629                 | 1726.9294              | -0.3664            | n          | 44       | 0.9     | - î          | K.AYTVLLYGNGPGYVLK.D                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 176        | 879.2425             |                           | 1756.8420              | -0.3715            | 0          | 83       |         | - i          | G. I IPVEEENPDFWNR.E                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 204        | 956.2437             | 1910.4729                 | 1910.8601              | -0.3872            | 0          | 29       | 28      | 3            | R.DSTLDPSLMENTEAALR.L + 2 Oxidation (M)                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 208        | 975.8100             | 1949.6055                 | 1950.0245              | -0.4190            | 0          | 85       | 6.6e-05 | 1            | K.NLIIFLGDGMGVSTVTAAR.I + Oxidation (M)                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 209        | 976.2340             | 1950.4534                 | 1950.8555              | -0.4021            | 0          | (27)     | 42      | 1            | K.DGARPDVTESESGSPEYR.Q                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 211        | 656.1752             | 1965.5039                 | 1964.8712              | 0.6327             | 0          | (72)     |         | 1            | K.DGARPDVTESESGSPEYR.Q + [+14.0157 at T8]                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 213        | 664.5518             | 1990.6336                 | 1991.0510              | -0.4174            | 0          | (58)     |         | 4            | K_NLIIFLGDGMGVSTVTAAR.I + Oxidat n (M); [+41.0266 at N-term N]                                                  |
| <b>V</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 216        | 1001.2027            | 2000.3908                 | 2000.8058              | -0.4150            | 0          | (65)     | 0.0069  | 1            | R.MGTPDPEYPDDYSQGGTR.L + 0xidatic Possible Assignments:                                                         |
| <b>V</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 217        | 667.8046             | 2000.3919                 | 2000.8058              | -0.4139            | 0          | 70       | 0.002   | 1            | R.MGTPDPEYPDDYSQGGTR.L + Oxidatio                                                                               |
| <b>V</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 218        | 670.1561             | 2007.4466                 | 2007.8770              | -0.4304            | 0          | 75       |         | 1            | K_DGARPDVTESESGSPEYR.Q + [+57.02] Thr->Asn (T) [+12.9952]                                                       |
| <b>V</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 222        | 681.8205             | 2042.4397                 | 2041.8324              | 0.6073             | 0          | (61)     |         | 1            | R.MGTPDPEYPDDYSQGGTR.L + Acetyl Hethylamine (T) [+13.0316] .9840 at E7]                                         |
| <b>V</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 252        | 784.5440             | 2350.6103                 | 2351.1030              | -0.4927            | 0          | (69)     |         | 1            | R_QQSAVPLDEETHAGEDVAVFAR.G + [-1]                                                                               |
| <b>V</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 253        | 790.2187             | 2367.6341                 | 2368.1295              | -0.4954            | 0          | 94       | 7.6e-06 | 1            | R.QQSAVPLDEETHAGEDVAVFAR.G                                                                                      |
| <b>V</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 260        | 809.2208             | 2424.6406                 | 2425.1510              | -0.5104            | 0          | (66)     |         | 1            | R_QQSAVFLDEETHAGEDVAVFAR.G + [+57.0215 at N-term Q]                                                             |
| <b>V</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 275        | 920.5878             | 2758.7415                 | 2759.3582              | -0.6167            | 0          | 90       |         | 1            | R_QEGCQDIATQLISHMDIDVILGGGR.K + Acetyl (N-term); Oxidation (M); [-0.9476 at                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |                      |                           |                        |                    |            |          |         |              |                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 700.0.11   | 100047-0-02          | 100 4-010031 5            | ******                 | 00010              |            |          |         |              |                                                                                                                 |
| 1:AAA51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7U8 2:AA   | HU9647 3:CAJ15       | 103 4:512076 5:           | AAA51709 8:AAA         | 98616              | _          | _        | _       |              | 🧿 🧳 Internet                                                                                                    |
| M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AS         | CO                   | <b>:</b> <i>M</i>         | odific                 | ation              | s          |          |         |              | © 2007-2010 Matrix Science                                                                                      |

As is methylation ay T8 for query 211


|          |               |                      | ror tolerant ex        | xample) - Micro        | osoft Interne     | et Exp  | orer         |         |      |                                                                                                           |
|----------|---------------|----------------------|------------------------|------------------------|-------------------|---------|--------------|---------|------|-----------------------------------------------------------------------------------------------------------|
| ile Ed   | lit View      | Favorites To         | ols Help               |                        |                   |         |              |         |      |                                                                                                           |
| 🕒 Bad    | k • 🗲         | ) - 💌 💈              | ) 🏠 🔎 Si               | earch 🤺 Favo           | rites 🚱           | ∕⊇•     | 2            | 🔁 -     | Po   | wermarks 🌃 👍 %                                                                                            |
| dress 🥻  | bttp://a      | www.matrivscienc     | e comicalmaster        | results.pl?file=/o     | lata/20070626     | FoGerie | S dat        | ,       |      | ▼ €                                                                                                       |
|          | - wapitti     |                      | orconycythascor,       | j courceptine - nye    | 30.0720070020,    |         |              |         |      |                                                                                                           |
| Select   | All           | Select None          | Searc                  | h Selected             | Error             | tolera  | nt           |         |      |                                                                                                           |
|          |               |                      |                        |                        |                   |         |              |         |      |                                                                                                           |
|          | <u>AAA517</u> |                      |                        | Score: 782             | Queries           | mat     | ched:        | 27 emPA | I: 0 | 1.78                                                                                                      |
|          |               |                      | Homo sapien:           |                        |                   |         |              |         |      |                                                                                                           |
|          | Check         | to include           | this hit in            | n error tole           | erant sear        | ch      |              |         |      |                                                                                                           |
| ſ        | Query         | Observed             | Mr(expt)               | Mr(calc)               | Delta             | Miss    | Score        | Expect  | Rank | Peptide                                                                                                   |
|          | 27            | 462.6807             | 923.3468               | 923.5116               | -0.1649           | 0       | 33           | 16      | 1    | R.FPYVALSK.T                                                                                              |
| _        | 41            | 517.1760             | 1032.3375              | 1032.5604              | -0.2229           | 0       | 70           | 0.0036  | 3    | R.GSSIFGLAPGK.A                                                                                           |
|          | 62            | 564.6804             | 1127.3463              | 1127.5764              | -0.2301           | 0       | 10           | 2.8e+03 | 6    | R.GFFLFVEGGR.I                                                                                            |
| <b>V</b> | 65            | 567.6567             | 1133.2987              | 1133.5499              | -0.2511           | 0       | 44           | 1.1     | 1    | R.GNEVISVMNR.A + Oxidation (M)                                                                            |
|          | 86            | 614.2001             | 1226.3856              | 1226.6329              | -0.2473           | 0       | 28           | 41      | 2    | K.LGPEIPLAMDR.F + Oxidation (M)                                                                           |
| <b>V</b> | 100           | 653.2101             | 1304.4057              | 1304.6837              | -0.2780           | 0       | (87)         | 5.7e-05 | 1    | K. GNFQTIGLSAAAR.F                                                                                        |
| <b>V</b> | 124           | 710.2235             | 1418.4324              | 1418.7154              | -0.2829           | 0       | 95           |         | 1    | K.GNFQTIGLSAAAR.F + Acetyl (N-term); [+72.0211 at N-term 6]                                               |
| <b>V</b> | 126           | 726.1806             | 1450.3465              | 1450.6477              | -0.3011           | 0       | 73           | 0.0012  | 1    | R. HWYSDADVPA SAR. Q                                                                                      |
| <b>V</b> | 133           | 499.1349             | 1494.3828              | 1494.6694              | -0.2866           | U       | 92           |         | 1    | L.DPSLMEMTEAALR.L + 2 Uxidation (M)                                                                       |
| <b>V</b> | 145           | 526.1538             | 1575.4396              | 1575.7814              | -0.3418           | 0       | (61)         |         | 1    | R.ALTETIMEDDAIER.A + [-48.0000 at F8]                                                                     |
| <b>~</b> | 156           | 820.7283             | 1639.4420              | 1639.7763              | -0.3343           | 0       | 97           | 5.1e-06 | 1    | R.ALTETIMFDDAIER.A + Oxidat <sup>1</sup> n (M)                                                            |
| <b>V</b> | 165           | 841.2310             | 1680.4474              | 1680.8029              | -0.3554           | 0       | (75)         |         | 1    | R_ALTETIMFDDAIER.A + Oxidati Possible Assignments: m A]                                                   |
| <b>V</b> | <u>170</u>    | 864.2888             | 1726.5629              | 1726.9294              | -0.3664           | 0       | 44           | 0.9     | 1    | K.AYTVLLYGNGPGYVLK.D<br>Phe->Val (F) [-48.0000]                                                           |
| <b>V</b> | 176           | 879.2425             | 1756.4705              | 1756.8420              | -0.3715           | 0       | 83           |         | 1    | 0.11FVEEERPDFWAR.E                                                                                        |
| _        | <u>204</u>    | 956.2437             | 1910.4729              | 1910.8601              | -0.3872           | 0       | 29           | 28      | 3    | R.DSTLDPSLMEMTEAALR.L + 2 0x                                                                              |
| <b>V</b> | 208           | 975.8100             | 1949.6055              | 1950.0245              | -0.4190           | 0       | 85           | 6.6e-05 | 1    | K.NLIIFLGDGMGVSTVTAAR.I + Oxidation (M)                                                                   |
|          | 209           | 976.2340             | 1950.4534              | 1950.8555              | -0.4021           | 0       | (27)         | 42      | 1    | K.DGARPDVTESESGSPEYR.Q                                                                                    |
| <b>V</b> | 211<br>213    | 656.1752<br>664.5518 | 1965.5039<br>1990.6336 | 1964.8712<br>1991.0510 | 0.6327<br>-0.4174 | 0<br>0  | (72)<br>(58) |         | 1    | K.DGARPDVTESESGSPEYR.Q + [+14.0157 at T8]                                                                 |
| <b>V</b> |               | 1001.2027            | 2000.3908              | 2000.8058              | -0.4150           | 0       | (56)         | 0.0069  | 1    | K_NLIIFLGDGMGVSTVTAAR.I + Oxidation (M); [+41.0266 at N-term N]<br>R.MGTPDPEYPDDYSQGGTR.L + Oxidation (M) |
|          | 217           | 667.8046             | 2000.3908              | 2000.8058              | -0.4130           | 0       | (83)         | 0.0089  | -    | R.MGTPDPEYPDDYSQGGTR.L + Oxidation (M)                                                                    |
|          | 218           | 670.1561             | 2000.3919              | 2000.8038              | -0.4304           | 0       | 75           | 0.002   | -    | K.DGARPDVTESESGSPEYR.Q + [+57.0215 at N-term D]                                                           |
|          | 222           | 681.8205             | 2042.4397              | 2041.8324              | 0.6073            | 0       | (61)         |         | - î  | R.MGTPDPEYPDDYSQGGTR.L + Acetyl (N-term); Oxidation (M); [-0.9840 at E7]                                  |
|          | 2.52          | 784.5440             | 2350.6103              | 2351.1030              | -0.4927           | 0       | (69)         |         | ÷.   | R.QOSAVPLDEETHAGEDVAVFAR.G + [-17.0265 at N-term 0]                                                       |
|          | 253           | 790.2187             | 2367.6341              | 2368.1295              | -0.4954           | 0       | 94           | 7.6e-06 | i    | R.QQSAVPLDEETHAGEDVAVFAR.G                                                                                |
|          | 2 60          | 809.2208             | 2424.6406              | 2425.1510              | -0.5104           | 0       | (66)         |         | i    | R.QQSAVPLDEETHAGEDVAVFAR.G + [+57.0215 at N-term Q]                                                       |
|          | 275           | 920.5878             | 2758.7415              | 2759.3582              | -0.6167           | 0       | 90           |         | 1    | R.QEGCQDIATQLISHMDIDVILGGGR.K + Acetyl (N-term); Oxidation (M); [-0.9476 at                               |
|          | _             |                      |                        |                        |                   |         |              |         |      |                                                                                                           |
|          |               |                      |                        |                        |                   |         |              |         |      |                                                                                                           |
| I:AAA51  | 708 2:AA      | H09647 3:CAJ15       | 5103 4:512076 5:       | AAA51709 8:AAA         | 98616             |         |              |         |      | 🛜 🛛 🔮 Internet                                                                                            |
|          |               |                      |                        |                        |                   |         |              |         |      | (MATRIX)                                                                                                  |
| M        | AS            | CO                   | : M                    | odific                 | ation             | S       |              |         |      | © 2007-2010 Matrix Science                                                                                |
| - v m    |               |                      |                        |                        |                   | -       |              |         |      | SCIENCE                                                                                                   |

In other cases, the match may be good, but the assignment is not believable. Query 145 is listed with a substitution at F8 causing a loss of 48 Da. This seems unlikely because we have 2 other matches to the same peptide without any substitution. What else could it be? Well, notice that the other two matches are both oxidised at M7. If we suppose this peptide is also oxidised, then the mass shift becomes -64, which is a well-known loss for oxidised methionine, (loss of methanesulfenic acid). This would seem a much more likely explanation for this match.

It is important to understand that the error tolerant search finds new matches by introducing mass shifts at different positions in the database sequences. The match may be very strong, but figuring out a credible assignment can require a bit of detective work.

| Peptide Summary Report (Error tolerant example) - Microsoft Internet Explorer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| File Edit View Favorites Tools Help                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b></b>  |
| 🔇 Back - 🕥 - 🖹 🖉 🕎 🔎 Search 🧙 Favorites 🧭 🔗 - 🧕 🧒 - Powermarks 🦗 🛧 🎭                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |
| Address 👩 http://www.matriscoince.com/cg/master_jesuks.piffle=/data/2007/626/FoGcre5.dat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 💌 🔁 Go   |
| A uch fur unany concernant of the second second operation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
| <pre>11. INTE Mass: 23978 Score: 454 Queries matched: 16 emPAI: 1.42 trypsin (EC 3.4.21.4) (isopropylphosphorylated) - bovine Check to include this hit in error tolerant search Query Observed Mr(csqt) Mr(csqt) Mr(csqt) Ar(csqt) Pelta Miss Score Expect Rank Peptide 2 1 577.1685 1152.3663 -0.2438 0 07 4.6e-05 1 K.SSUTSYPPUK.C ( 2 2 598.1756 1194.3566 1194.356 1194.3766 -0.2438 0 90 2.2e-05 1 K.VCHWYNK.C ( 2 2 598.1756 1194.356 1194.356 1194.3766 -0.2438 0 90 2.2e-05 1 K.VCHWYNK.C ( 3 3 606.1892 1210.3539 1210.5717 -0.2158 0 (61) 1 K.SSUTSYPPUK.K.C ( 1±22.0106 at H-term S] 2 4 54.6704 1167.3225 1167.3747 -0.2484 0 90 2.2e-05 1 K.VCHWYNK.C ( 1±22.0106 at H-term S] 2 53 606.1892 1210.3539 1210.5717 -0.2158 0 (61) 1 K.SSUTSYPPUK.K.C ( 1±23.0966 at K] 2 11 270.1270 1270.2411 1270.4629 -0.2219 0 (67) 1 K.SSUTSYPPUK.K.C ( 1±23.0966 at K] 2 22 1001.7655 1216.3922 1210.3531 -0.3046 0 72 0.0017 1 K.LQUTYNWSGCAQK.H 2 22 1001.7655 1216.3922 120.2491 -0.2567 0 156 5.1e-12 1 R.LGEDNINVYCENEQITSASK.S ( 2 211 721.8998 2162.6773 2162.0491 0.6204 0 (42) 1.5 1 R.LGEDNINVYCENEQITSASK.S ( 2 211 721.8998 2162.6773 2162.0491 0.6204 0 (42) 1.5 1 R.LGEDNINVYCENEQITSASK.S ( 2 212 729.3534 2105.0825 2106.0224 -0.4355 0 (109) 1 R.LGEDNINVYCENEQITSASK.S ( 2 213 729.3534 2105.0825 2108.0204 -0.4355 0 (109) 1 R.LGEDNINVYCENEQITSASK.S ( 2 214 720.8029 2203.9912 2203.9921 2203.9921 2203.9922 203.9922 203.9921 203.9921 203.9921 203.9921 203.9921 203.9932 203.9932 203.9932 203.9932 203.9932 203.9932 203.9932 203.9932 203.9932 203.9932 203.9932 203.9932 203.9932 203.9932 203.9932 203.9932 203.9932 203.9932 203.9932 203.9932 203.9932 203.9932 203.9932 203.9932 203.9932 203.9932 203.9932 203.9932 203.9932 203.9932 203.9932 203.9932 203.9932 203.9932 203.9932 203.9932 203.9932 203.9932 203.9932 203.9932 203.9932 203.9932 203.9932 203.9932 203.9932 203.9932 203.9932 203.9932 203.9932 203.9932 203.9932 203.9932 203.9932 203.9932 203.9932 203.9932 203.9932 203.9932 203.9932 203.9932 203.9932 203.9932 203.9932 203.9932 203.9932 203.9932 203.9932 203.9932</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |
| <sup>1</sup> / <sub>2</sub> |          |
| 33     606.1682     1210.3529     1210.5717     -0.2158     0     (61)     1     K_SSOTSYPDVLK.C + [ <u>458.0055</u> at .N-tecm S]       94     640.1278     1278.2411     1278.4629     -0.2219     0     (67)     1     K_SSOTSYPDVLK.C + [ <u>4125.8946</u> at Y6]       132     745.7224     1489.7348     -0.3046     0     72     0.0017     1     K_LQQIVSUGGCAQN       229     1081.7685     2161.5224     2162.0491     -0.5267     0     156     5.1e-12     1     R_LGEININVEGNEQFISASK.S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | >        |
| MASCOT : Modifications © 2007-2010 Matrix Science                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TX<br>CE |

You should also look at the other yellow pop-up when trying to decide whether to accept a match or not. In this example, the error tolerant search was able to get a slightly higher score by shifting a modification of +42 Da from the amino terminus to the adjacent glycine. However, as score increase of 2 in 100 is negligible. Much more believeable to take the original match from the first pass search, which can be explained as N-terminal acetylation.



In summary, an error tolerant search

•Can successfully locate mass differences corresponding to unsuspected modifications or SNP's

•User must decide on best explanation for the observed differences

•Limited to proteins which have at least one good peptide match ... not very useful for (say) MHC peptides