



Modifications are a very important topic in database searching.

In some cases, the main focus of a study is to characterise post translational modifications, which may have biological significance. Phosphorylation would be a good example.

In other cases, the modification may not be of interest in itself, but you need to allow for it in order to get a match. Oxidation during sample preparation would be an example.

And, of course, many methods of quantitation involve modifications containing isotopic labels

Some sequence variants, such as the substitution of one residue by another, are equivalent to modifications, and can be handled in a similar way

| Addres | ss 🙋 | http://v | ww.un    | imod.o  | rg/modifications_li | st.php?goto=14           |                    | - ja ja                                                      |                             |                         | ~                             | ə G |
|--------|------|----------|----------|---------|---------------------|--------------------------|--------------------|--------------------------------------------------------------|-----------------------------|-------------------------|-------------------------------|-----|
|        | l    | J٢       | 11)      | 0       | DD prot             | ein modification         | s for mass spectro | ometry                                                       |                             |                         | Help                          |     |
|        |      | A        | dd<br>ew | oa<br>s | earch for: [        | Logged a<br>Any field    | Contains           | Change password Advanced search                              | arch Details<br>S<br>Page 1 | found:<br>31<br>4 of 27 | Records Per<br>Page::<br>20 V |     |
|        |      |          |          |         |                     |                          | Sele               | ct/Unselect all Delete selected                              |                             |                         |                               |     |
|        | ľ    | •        | ,<br>E   | Î       | Accession<br>#      | PSI-MS Name              | Interim name       | Description                                                  | Monoisotopic<br>mass        | Average<br>mass         | Composition                   |     |
|        | Edit | Сору     | View     |         | 40                  | Sulfo                    | Sulfation          | O-Sulfonation                                                | 79.956815                   | 80.0632                 | O(3) S                        |     |
|        | Edit | Сору     | View     |         | 21                  | Phospho                  | Phospho            | Phosphorylation                                              | 79.966331                   | 79.9799                 | H O(3) P                      |     |
|        | Edit | Сору     | View     |         | 549                 |                          | Cys->Trp           | Cys->Trp substitution                                        | 83.070128                   | 83.0670                 | H(5) C(8) N S(-1)             |     |
|        | Edit | Сору     | View     |         | 211                 | NEIAA                    | NEIAA-d0           | N-ethyl iodoacetamide-d0                                     | 85.052764                   | 85.1045                 | H(7) C(4) N O                 |     |
|        | Edit | Сору     | View     |         | 747                 |                          | Malonyl            | Malonylation of C and S residues                             | 86.000394                   | 86.0462                 | H(2) C(3) O(3)                |     |
|        | Edit | Сору     | View     |         | 371                 | нмук                     | HMVK86             | Michael addition of hydroxymethylvinyl<br>ketone to cysteine | 86.036779                   | 86.0892                 | H(6) C(4) O(2)                |     |
|        | Edit | Сору     | View     |         | 324                 | DTBP                     | DTBP               | dimethyl 3,3\'-dithiobispropionimidate                       | 87.014270                   | 87.1435                 | H(5) C(3) N S                 |     |
|        | Edit | Сору     | View     |         | 178                 | DAET                     | ser_thr_DAET       | phosphorylation to amine thiol                               | 87.050655                   | 87.1866                 | H(9) C(4) N O(-1)<br>S        |     |
|        | Edit | Сору     | View     |         | 379                 | Hypusine                 | hypusine           | hypusine                                                     | 87.068414                   | 87.1204                 | H(9) C(4) N O                 |     |
|        | Edit | Сору     | View     |         | 126                 | Thioacyl                 | DSP                | thioacylation of primary amines (N-term<br>and Lys)          | 87.998285                   | 88.1283                 | H(4) C(3) O S                 |     |
|        | Edit | Сору     | View     |         | 185                 | Label:13C(9)<br>+Phospho | 13C9_Phospho_Tyr   | C13 label (Phosphotyrosine)                                  | 88.996524                   | 88.9138                 | H C(-9) 13C(9) O<br>(3) P     |     |
|        | Edit | Сору     | View     |         | 212                 | NEIAA:2H(5)              | NEIAA-d5           | N-ethyl iodoacetamide-d5                                     | 90.084148                   | 90.1353                 | H(2) 2H(5) C(4) N<br>O        |     |
|        | Edit | Сору     | View     |         | 724                 |                          | O-Methylphosphate  | O-Methylphosphorylation                                      | 93.981981                   | 94.0065                 | H(3) C O(3) P                 |     |
| Done   | 8    |          |          |         |                     |                          | <u> </u>           |                                                              |                             |                         | Internet                      |     |

Comprehensive and accurate information about post translational and chemical modifications is an essential factor in the success of protein identification. In Mascot, we take our list of modifications from Unimod, which is an on-line modifications database.

| UNIM             | OD             | protein modifi    | instigne for mass enastrom                                         | ata,                                                               |                                                                              |                                                         | -     |
|------------------|----------------|-------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------------|-------|
| Unimod, View I   | record [ A     | ccession #: 5     | 6]                                                                 | o u y                                                              |                                                                              | Help                                                    |       |
| Back to list     |                |                   |                                                                    |                                                                    |                                                                              |                                                         |       |
| Accession #      | 56             |                   | PSI-MS Name                                                        | Acetyl:2H(3)                                                       | Interim Name                                                                 | Acetyl_heavy                                            |       |
| Description      | Acetate la     | beling reagent (N | I-term & K) (heavy form, +3amu                                     | (د                                                                 |                                                                              |                                                         |       |
| Alt. Description | N-trideute     | riumaceto×y       |                                                                    |                                                                    |                                                                              |                                                         |       |
| Composition      | H(-1) 2H(3     | 3) C(2) O         | Monoisotopic                                                       | 45.029395                                                          | Average                                                                      | 45.0552                                                 |       |
| Specificity Def  | inition 1      |                   |                                                                    |                                                                    |                                                                              |                                                         |       |
| Site             | к              |                   | Position                                                           | Anywhere                                                           | Classification                                                               | Isotopic label                                          |       |
| Hidden           | 1              |                   | Group                                                              | 1                                                                  |                                                                              |                                                         |       |
| Specificity Def  | inition 2      |                   |                                                                    |                                                                    | et                                                                           | and the second second                                   |       |
| Site             | N-term         |                   | Position                                                           | Any N-term                                                         | Classification                                                               | Isotopic label                                          |       |
| Notos and Pofe   | 1<br>Droncos   |                   | Group                                                              | 2                                                                  |                                                                              |                                                         |       |
| Source           | PubMed<br>PMID | Reference         | 11857757                                                           |                                                                    |                                                                              |                                                         |       |
| Source           | PubMed<br>PMID | Reference         | 11999733                                                           |                                                                    |                                                                              |                                                         |       |
| Source           | PubMed<br>PMID | Reference         | 12175151                                                           |                                                                    |                                                                              |                                                         |       |
| Source           | Journal        | Reference         | Fred E., Department of Chemis                                      | effects in comparative proteon<br>stry, Purdue University, West L  | nics. Zhang, Roujian; Sioma, Cathy<br>afayette, IN, USA. Analytical Chemi:   | S.; Thompson, Robert A.; Xiong, Li; Reg<br>stry (2      | hier, |
| Source           | Journal        | Reference         | Global internal standard techno<br>University, West Lafayette, IN, | ology for comparative proteom<br>USA. Journal of Chromatogray      | ics. Chakraborty, Asish; Regnier, Fr<br>ohy, A (2002), 949(1-2), 173-184.    | ed E Department of Chemistry, Purdue                    |       |
| Source           | Journal        | Reference         | Comparative proteomics based<br>Peiran; Chakraborty, Asish; Se     | d on stable isotope labeling and<br>eeley, Erin; Sioma, Cathy; Tho | l affinity selection. Regnier, Fred E.;<br>mpson, Robert A. Department of Ch | Riggs, Larry; Zhang, Roujian; Xiong, Li;<br>emistry, Pu | Liu,  |
| Curator          | penner         | Last Modified     | 2006-10-16 10:02:50                                                |                                                                    | Verified                                                                     | Yes                                                     |       |
| Back to list     |                |                   |                                                                    |                                                                    |                                                                              |                                                         |       |
|                  |                |                   |                                                                    |                                                                    |                                                                              |                                                         | ~     |
|                  |                |                   |                                                                    |                                                                    |                                                                              | Internet                                                |       |

There are other lists of modifications on the web, like DeltaMass on the ABRF web site and RESID from the EBI, but none is as comprehensive as Unimod

Mass values are calculated from empirical chemical formulae, eliminating the most common source of error. Specificities can be defined in ways that are useful in database searching, and there is the option to enter mass-spec specific data, such as neutral loss information. This screen shot shows one of the better annotated entries, I can't pretend that all of them are this detailed. Nevertheless, it is a very useful, public domain resource that beats having to create your own list in an Excel spreadsheet or on the back of an envelope.



If you go to the help page, there is a link to download the contents of Unimod as a Mascot modifications file. This is the easiest way to keep the modifications list on an in-house Mascot server up-to-date



Here is a tip. The default list of modifications displayed in the Mascot search form is a short list, containing only the most common mods. If you want to see the complete list of mods, and you are using Mascot 2.2 or earlier, you need to follow the link at the bottom of the search form selection page

|                           | Reader And Land And Land                                                                  | 🛛 🖾 🖉       | 2 🗾 🛄                 | PC           | owermarks 🕅 🧥 | *         |
|---------------------------|-------------------------------------------------------------------------------------------|-------------|-----------------------|--------------|---------------|-----------|
| idress 🙋 http://www.matri | xscience.com/cgi/form_defaults.pl                                                         |             |                       |              |               | <u> </u>  |
| (MATRIX)<br>SCIENCE)      |                                                                                           | HOME WHAT'S | NEW I MASCOT I HELP I | PRODUCTSSUPP |               | Search Go |
| Mascot > Set Se           | arch Defaults                                                                             |             |                       |              |               |           |
|                           |                                                                                           |             |                       |              |               |           |
| Set Mascot                | search form defaults                                                                      |             |                       |              |               |           |
| Database                  | MSDB                                                                                      |             |                       |              |               |           |
| Taxonomy                  | All entries                                                                               | ~           |                       |              |               |           |
| Enzyme                    | Trypsin 💌                                                                                 |             |                       |              |               |           |
| Allow up to               | 1 v missed cleavages                                                                      |             |                       |              |               |           |
| Fixed<br>modifications    | AB_old_ICATd0 (C)<br>AB_old_ICATd8 (C)<br>Acetyl (K)<br>Acetyl (N-term)<br>Amide (C-term) |             |                       |              |               |           |
| Variable<br>modifications | AB_old_ICATd0 (C)<br>AB_old_ICATd8 (C)<br>Acetyl (K)<br>Acetyl (N-term)<br>Amide (c-term) |             |                       |              |               |           |
| Show all mods.            |                                                                                           |             |                       |              |               |           |
| ICAT                      | □ (MS/MS only)                                                                            |             |                       |              |               |           |
| Peptide tol. ±            | 1.2 Da 💌                                                                                  |             |                       |              |               |           |
| MS/MS tol. ±              | 0.6 Da 💌                                                                                  |             |                       |              |               |           |
| Peptide charge            | 1+ 💌                                                                                      |             |                       |              |               |           |
| Monoisotopic              |                                                                                           |             |                       |              |               |           |
| Data format               | Mascot generic 🛛 MS/MS only)                                                              |             |                       |              |               |           |
|                           |                                                                                           |             |                       |              |               | Internet  |

Check the box for Show all mods, then choose Save. This still sets the default state of the checkbox in Mascot 2.3, but we decided to place the checkbox on the search form, so as to make it easier to swap between the short and long lists.



It is extremely important that you do not choose more than the absolute minimum number of variable modification in a search. We talked about this in an earlier presentation, but it is worth repeating.

Variable or differential or non-quantitative modifications are expensive, in the sense that they increase the time taken for a search and reduce its specificity. This is because the software has to permute out all the possible arrangements of modified and unmodified residues that fit to the peptide molecular mass. As more and more modifications are considered, the number of combinations and permutations increases geometrically. The socalled combinatorial explosion.

Some variable modifications are worse than others. Modifications that only apply to a terminus, especially if they only apply when particular residue is at the terminus, like pyroglu, make little difference to the number of peptides to be tested. The problem modifications are the ones that apply to residues in any position, especially if they apply to multiple residues, like phosphorylation.

Unless you have enriched the sample in a particular PT-mod, e.g IMAC for phosphopeptides, it is usually not a good idea to try and catch PT-mods in a first pass search. Better to use a second pass search, which we call an error tolerant search, to catch the low abundance mods. We will come back to this later.



To illustrate this point. This search of a single MS/MS spectrum, using one variable mod, gives a nice, statistically significant match.

If the search is repeated with 8 mods, the match is the same, with an identical score, but now it is barely significant.

All of these mods have effectively increased the size of the database by a factor of 30

What's worse, the search takes over 10 times as long!

So, use variable mods sparingly. You'll get better results and faster.

By the way, the yellow region in the histogram indicates scores above the homology but below the identity thresholds. You will only see these regions highlighted in an MS/MS search report if it is a search of a single spectrum.



Of all post-translational modifications, phosphorylation is one of the most interesting and also one of the most difficult. Why is it such a challenge?

| Peptide Su                                                                                   | unmary Report                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Format As                                                                                    | Peptide Summary Help                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                              | Significance threshold p< 0.05 Max. number of hits AUTO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                              | Standard scoring  MudPIT scoring Ions score or expect cut-off Show sub-sets                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                              | Show pop-ups ③ Suppress pop-ups ③ Sort unassigned Decreasing Score 🖌 Require bold red 🗌                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ( <b>a</b> )                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Select All                                                                                   | Select None Search Selected Liror toler ant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1. CASE                                                                                      | BOVIN Mass: 25091 Score: 88 Matches: 1(1) Sequences: 1(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Beta                                                                                         | -casein OS=Bos taurus GN=CSN2 PE=1 SV=2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Beta<br>Checi                                                                                | -casein OS-Bos taurus GN=CSN2 PE=1 SV=2<br>k to include this hit in error tolerant search                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Beta                                                                                         | Casein OS-Bos taurus GN=CSN2 PE-1 SV=2<br>k to include this hit in error tolerant search                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Beta<br>Check<br>Query                                                                       | casein OS=Bos taurus GN=CSN2 PE=1 SV=2<br>k to include this hit in error tolerant search<br>7 Observed Mr(expt) Mr(calc) Delta Miss Score Expect Rank Unique Peptide<br>1 13114000 2660.7854 2060.8212 -0.0337 0 88 1.6e-06 1 V K.FOSEE000TEDELODK.I + Phose                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Beta<br>Check<br>Query                                                                       | -camein OS-Bos taurus GN=CSN2 PE=1 SV=2<br>k to include this hit in error tolerant search<br>y Observed Mr(expt) Mr(calc) Delta Miss Score Expect Rank Unique Peptide<br>1031.4000 2060.7854 2060.8212 -0.0357 0 88 1.6e-06 1 V K.FQSEEQQ0TEDELQDK.I + Phosy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Beta<br>Check<br>Query                                                                       | -casein OS-Bos taurus GN=CSN2 PE=1 SV=2<br>k to include this hit in error tolerant search<br>y Observed Mr(expt) Mr(calc) Delta Miss Score Expect Rank Unique Peptide<br>1031.4000 2060.7854 2060.8212 -0.0357 0 88 1.6e-06 1 U K.FQSEEQQQTEDELQDK.I + Phosp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Beta<br>Check<br>Query<br>V<br>Prot                                                          | casein OS-Bos taurus GN=CSN2 PE-1 SV=2<br>k to include this hit in error tolerant search<br>v Observed Mr(expt) Mr(calc) Delta Miss Score Expect Rank Unique Peptide<br>1031.4000 2060.7854 2060.8212 -0.0357 0 88 1.6e-06 1 U K.FQSEEQQQTEDELQDK.I + Phosp<br>Top scoring peptide matches to query 1<br>Score greater than 39 indicates homology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Beta<br>Checi<br>Query<br>✓<br>Prot                                                          | -casein OS-Bos taurus GN=CSN2 PE-1 SV=2<br>k to include this hit in error tolerant search<br>y Observed Mr(expt) Mr(calc) Delta Miss Score Expect Rank Unique Peptide<br>1031.4000 2060.7854 2060.8212 -0.0357 0 88 1.6e-06 1 V K.FQSEEQQQTEDELQDK.I + Phosp<br>Top scoring peptide matches to query 1<br>Score greater than 39 indicates homology<br>Score greater than 39 indicates dentity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Beta<br>Checi<br>Query<br>✓<br>Prote<br>Beta                                                 | -casein 05=Bos taurus GN=CSN2 PE=1 SV=2<br>At to include this hit in error tolerant search<br><b>7 Observed Mr(expt) Mr(calc) Delta Miss Score Expect Rank Unique Peptide</b><br>1031.4000 2060.7854 2060.8212 -0.0357 0 88 1.6e-06 1 U K.FQSEEQQQTEDELQDK.I + Phosp<br>Top scoring peptide matches to query 1<br>Score greater than 39 indicates homology<br>Score greater than 43 indicates identity<br>France France France Content of the State of t |
| Beta<br>Checi<br>Query<br>V<br>Prote<br><u>CASB</u><br>Beta<br>CASB                          | -casein OS-Bos taurus GN-CSN2 PE-1 SV-2<br>k to include this hit in error tolerant search<br>9 Observed Mr(expt) Mr(calc) Delta Miss Score Expect Rank Unique Peptide<br>1031.4000 2060.7854 2060.8212 -0.0357 0 88 1.6e-06 1 U K.FQSEE000TEDELQDK.I + Phosp<br>Top scoring peptide matches to query 1<br>Score greater than 39 indicates identity<br>Score greater than 43 indicates identity<br>Score Expect Delta Mit Protein Peptide<br>88.3 1.6e-06 -0.0357 1 C.SR BOUNK K.FOGEFOOGTEDELODE, I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Beta<br>Checi<br>Query<br>Prote<br>CASB<br>Beta<br>CASB                                      | -casein OS-Bos taurus GN=CSN2 PE-1 SV=2<br>k to include this hit in error tolerant search<br>y Observed Mr(expt) Mr(calc) Delta Miss Score Expect Rank Unique Peptide<br>1031.4000 2060.7854 2060.8212 -0.0357 0 88 1.6e-06 1 U K.FQSEEQQQTEDELQDK.I + Phosp<br>Top scoring peptide matches to query 1<br>Score greater than 39 indicates homology<br>Score greater than 43 indicates identity<br>Score Expect Delta Mit Protein Peptide<br>88.3 1.6e-06 -0.0357 1 CASE BOVIN K.FQSEEQQQTEDELQDK.I<br>28.6 1.5 -0.0357 1 CASE BOVIN K.FOGEEQQCTEDELQDK.I<br>28.6 1.5 -0.0357 1 CASE DOVIN K.FOGEEDQCTEDELQDK.I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Beta<br>Checi<br>Query<br>V<br>Prot<br>CASB<br>Beta<br>Beta<br>Beta                          | -casein 05=Bos taurus GN=CSN2 PE-1 SV=2<br>k to include this hit in error tolerant search<br><b>v Observed Mr(expt) Mr(calc) Delta Miss Score Expect Rank Unique Peptide</b><br>1031.4000 2060.7854 2060.8212 -0.0357 0 88 1.6e-06 1 V K.FQSEEQQQTEDELQDK.I + Phosp<br>Top scoring peptide matches to query 1<br>Score greater than 39 indicates identity<br>Score greater than 43 indicates identity<br>Score Expect Delta Hit Protein Peptide<br>88.3 1.6e-06 -0.0357 1 CASE_BOVIN K.FQSEEQQQTEDELQDK.I<br>28.6 1.5 -0.0357 1 CASE_BOVIN K.FQSEEQQQTEDELQDK.I<br>21.0 8.8 -0.1866 K.CLSLSKYOULPFETIEK.H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Beta<br>Check<br>Query<br>Prote<br>Beta<br>CASB<br>Beta                                      | -casein OS-Bos taurus GN-CSN2 PE-1 SV-2<br>k to include this hit in error tolerant search<br>y Observed Mr(expt) Mr(calc) Delta Miss Score Expect Rank Unique Peptide<br>1031.4000 2060.7854 2060.8212 -0.0357 0 88 1.6e-06 1 V K.PQSEEQQ0TEDELQDK.I + Phosp<br>Top scoring peptide matches to query 1<br>Score greater than 39 indicates homology<br>Score greater than 39 indicates identity<br>Score Expect Delta Hit Protein Peptide<br>88.3 1.6e-06 -0.0357 1 CASE BOVIN K.PQSEEQQ0TEDELQDK.I<br>28.6 1.5 -0.0357 1 CASE BOVIN K.PQSEEQQTEDELQDK.I<br>28.6 1.5 -0.0357 1 CASE BOVIN K.PQSEEQQTEDELQDK.I<br>21.0 8.8 -0.1886 K.CLSLSKQPDLFETIEK.H<br>15.9 28 -0.0907 K.CUVDKSPMPEPEDEK.G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Beta<br>Checi<br>Query<br>V<br>Prot.<br>CASB<br>Beta<br>CASB<br>Beta                         | -casein OS-Bos taurus GN=CSN2 PE-1 SV=2<br>At to include this hit in error tolerant search<br>V Observed Mr(expt) Mr(calc) Delta Miss Score Expect Rank Unique Peptide<br>1031.4000 2060.7854 2060.8212 -0.0357 0 88 1.6e-06 1 U K.FQSEEQQQTEDELQDK.I + Phosp<br>Top scoring peptide matches to query 1<br>Score greater than 39 indicates homology<br>Score greater than 39 indicates identity<br>Score Expect Delta Mit Protein Peptide<br>88.3 1.6e-06 -0.0357 1 CASE BOVIN K.FQSEEQQQTEDELQDK.I<br>28.6 1.5 -0.0357 1 CASE BOVIN K.FQSEEQQQTEDELQDK.I<br>21.0 0.8 -0.1886 K.CLSLSRQUETETIEK.H<br>15.9 28 -0.0907 K.QMVDKDSPHVEPDEK.G<br>14.1 42 -0.1713 K.QLASCFTHOREQKQAK.R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Beta<br>Check<br>Query<br>Prot.<br>CASB<br>Beta<br>CASB<br>Beta<br>Search Par                | -casein OS-Bos taurus GN-CSN2 PE-1 SV-2<br>k to include this hit in error tolerant search<br>y Observed Mr(expt) Mr(calc) Delta Miss Score Expect Rank Unique Peptide<br>1031.4000 2060.7854 2060.8212 -0.0357 0 80 1.6e-06 1 U K.FQSEEQQ0TEDELQDK.I + Phosp<br>Top scoring peptide matches to query 1<br>Score greater than 39 indicates inducing<br>Score greater than 39 indicates inducing<br>Score expect Delta Hit Protein Peptide<br>88.3 1.6e-06 -0.0357 1 CASB_BOVIN K.FQSEEQQ0TEDELQDK.I<br>28.6 1.5 -0.0357 1 CASB_BOVIN K.FQSEEQQ0TEDELQDK.I<br>21.0 0.8 -0.1886 K.CLSLSKQVDIFETIEK.H<br>15.9 28 -0.0907 K.GMVVDKOBPHOFENC.G<br>14.1 42 -0.1713 K.GLASOFFINGEONKR.R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Beta<br>Checi<br>Query<br>Prote<br>CASB<br>Beta<br>CASB<br>Beta<br>Search Pai                | -casein 05=Bos taurus GN=CSN2 PE-1 5V=2<br>& to include this hit in error tolerant search<br><b>7 Observed Mr(expt) Mr(calc) Delta Miss Score Expect Rank Unique Peptide</b><br>1031.4000 2060.7854 2060.8212 -0.0357 0 88 1.6e-06 1 V K.FQSEEQQQTEDELQDK.I + Phosp<br>Top scoring peptide matches to query 1<br>Score greater than 39 indicates homology<br>Score greater than 43 indicates identity<br>Score Expect Delta Mit Protein Peptide<br>88.3 1.6e-06 -0.0357 1 CASE BOVIN K.FQSEEQQQTEDELQDK.I<br>28.6 1.5 -0.0357 1 CASE BOVIN K.FOSEEQQQTEDELQDK.I<br>28.6 1.5 -0.0357 1 CASE BOVIN K.FOSEEQQTEDELQDK.I<br>28.6 1.5 -0.1866 K.CUSLSKOWDLFEFIEK.H<br>15.9 28 -0.0907 K.CWNWDKOSPHEFEDEK.G<br>14.1 42 -0.1713 K.CULAGCETEINQEQKOAK.R<br>13.6 47 -0.1469 K.ITFLELTFRQONKLS.S<br>12.8 58 -0.1366 K.SSOUPTOPYTERFYK.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Beta<br>Check<br>Query<br>Frot.<br>CASB<br>Beta<br>CASB<br>Beta<br>Search Par<br>Type of sea | -casein OS-Bos taurus GN-CSN2 PE-1 SV-2<br>k to include this hit in error tolerant search<br>y Observed Mr(expt) Mr(calc) Delta Miss Score Expect Rank Unique Peptide<br>1031.4000 2060.7854 2060.8212 -0.0357 0 88 1.6e-06 1 U K.FQSEEQQQTEDELQDK.I + Phosp<br>Top scoring peptide matches to query 1<br>Score greater than 39 indicates identity<br>Score greater than 43 indicates identity<br>Score sequent Delta Mit Protein Peptide<br>88.3 1.6e-06 -0.0357 1 CASE BOVIN K.FQSEEQQQTEDELQDK.I<br>28.6 1.5 -0.0357 1 CASE BOVIN K.FQSEEQQQTEDELQDK.I<br>21.0 6.8 -0.1866 K.CSLSSEQUETELDK.E<br>14.1 42 -0.1713 K.CLSLSSEQUETELDK.E<br>15.6 47 -0.1469 K.ITPLEEITENQERQAK.R<br>15.8 58 -0.1366 K.SSSQLFTQPPTREPTOK.G<br>15.8 54 -0.2007 K.SLQCECOLVALDELAR.R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Beta<br>Check<br>Query<br>Prot.<br>CASB<br>Beta<br>Search Pal<br>Type of sea<br>Enzyme       | -cazein OS-Bos taurus GN-CSN2 PE-1 SV-2<br>k to include this hit in error tolerant search<br>y Observed Mr(expt) Mr(calc) Delta Miss Score Expect Rank Unique Peptide<br>1031.4000 2060.7854 2060.8212 -0.0357 0 88 1.6e-06 1 V K.PQSEEQQQTEDELQDK.I + Phosp<br>Top scoring peptide matches to query 1<br>Score greater than 39 indicates homology<br>Score greater than 39 indicates identity<br>Score Expect Delta Hit Protein Peptide<br>88.3 1.6e-06 -0.0357 1 CASE BOVIN K.PQSEEQQQTEDELQDK.I<br>28.6 1.5 -0.0357 1 CASE BOVIN K.PQSEEQQTEDELQDK.I<br>28.6 1.5 -0.0357 1 CASE BOVIN K.PQSEEQQTEDELQDK.I<br>29.8 -0.1886 K.CLSLSKQVDLFETIEK.H<br>15.9 28 -0.0367 K.CMVVKDSPHEFEDEK.G<br>14.1 42 -0.1713 K.CLASEVTINDEQKAK.R<br>13.6 47 -0.1469 K.ITPLEEIYFNEDDINEK.S<br>12.8 58 -0.1366 K.SSSOTTOPPTYREFFOR.G<br>12.3 64 -0.2007 K.SUCREGNEWAEDLESK.R<br>1.9 71 -0.1635 K.VULLCVGETINEEDEK.T<br>11.5 72 -0.055 P. ONINGENERIE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Beta<br>Checi<br>Query<br>Prot<br>CASB<br>Beta<br>CASB<br>Beta<br>Search Pat                 | -casein OS-Bos taurus GN-CSN2 PE-1 SV-2<br>k to include this hit in error tolerant search<br>y Observed Mr(expt) Mr(calc) Delta Miss Score Expect Rank Unique Peptide<br>1031.4000 2060.7854 2060.8212 -0.0357 0 88 1.6e-06 1 U K.F0SEE000TEDELQDK.I + Phosp<br>Top scoring peptide matches to query 1<br>Score greater than 39 indicates homology<br>Score greater than 43 indicates identity<br>Score greater than 43 indicates identity<br>Score greater than 41 indicates identity<br>Score greater than 43 indicates identity<br>Score action 1 CASE BOVIN K.F0SEE000TEDELQDK.I<br>28.6 1.5 -0.0357 1 CASE BOVIN K.F0SEE000TEDELQDK.I<br>21.0 6.8 -0.0866 K.CLSLSKOULPETLIEK.H<br>15.9 28 -0.0907 K.CULSKKOULPETLIEK.H<br>13.6 47 -0.1469 K.ITFLELVFNDONNEK.S<br>12.6 58 -0.1366 K.SSUCPTOPYDE0FOK.G<br>12.3 64 -0.2007 K.SUCEFCEDLSVAEDELSEK.R<br>11.9 71 -0.1635 K.VLLCVCETUREPEDEK.R<br>11.9 71 -0.1635 K.OUTLEVERDONNER.SK.R<br>11.5 78 -0.0655 R.ODFLDILLSAKSENTK.D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

Lets look at an example or two.

One of the most common phosphopeptides comes from the milk protein, beta casein. There are two potential phosphorylation sites, S and T, but only one is modified. Because the two sites are widely separated, the two arrangements get very different scores.



Beautiful spectrum; long run of y ions; move site to T9 and many matches would disappear



Mascot 2.4 reports site localisation probabilities using the delta score method published in MCP by Bernard Kuster's group. They analysed a collection of synthetic analogs of real phosphopeptides and determined what score difference was required to determine the correct site with an error rate of (say) 5%. Because we don't expect everyone to calibrate their data in this way, we have made the calculation slightly more conservative. A score difference of 10 would give approximately 90% probability that the higher scoring arrangement was correct.

| 00 Error (ppn)<br>0 0 |                         |           |                                 | ······                   |           |
|-----------------------|-------------------------|-----------|---------------------------------|--------------------------|-----------|
| RMS err               | or 60 ppm<br>BLAST cear | ch of FC  | SEECOOTEDELODK                  | Mass (Da)                |           |
| Paran<br>Other        | eters: blastp,          | nr protei | in database, expect=20000, no i | filter, PAM30)           |           |
| Allma                 | tches to this           | ouerv     | E                               |                          |           |
| Score                 | Mr(calc)                | Delta     | Sequence                        | Site Analysis            |           |
| 88.3                  | 2060.8212               | -0.0357   | FOSEEQOOTEDELODK                | Phospho S3 100.00%       |           |
| 28.6                  | 2060.8212               | -0.0357   | FOSEEOOOTEDELODK                | Phospho T9 0.00%         |           |
| 21.0                  | 2060.9741               | -0.1886   | CLSLSKOVDLFEETIEK               |                          | R         |
| 15.9                  | 2060.8762               | -0.0907   | <b>OMVVDKDSPHVEPEDEK</b>        |                          |           |
| 14.1                  | 2060.9568               | -0.1713   | <u>OLASGEYFLNOEOKOAK</u>        |                          |           |
| 13.6                  | 2060.9343               | -0.1489   | ITFLEELYPKDODNEK                |                          |           |
| 12.8                  | 2060.9221               | -0.1366   | SSSQIPTOPPVTK SPYGK             |                          |           |
| 12.3                  | 2060.9862               | -0.2007   | SLQEGEGDLSVAEDRLSEK             |                          |           |
| 11.0                  | 2060.9489               | -0.1635   | YLILCVGETILNERDSEK              |                          |           |
| 11.2                  | 2060.8509               | -0.0655   | <u>QDFLDILLSAK SENTK</u>        |                          |           |
| 11.5                  |                         |           | 24                              |                          |           |
| 11.5                  |                         |           | Masc                            | ot: http://www.matrixsci | ence.com/ |
| 11.5                  |                         |           |                                 |                          |           |

A very large score difference such as the one we were just looking at gives 100% likelihood that the phosphate is on S3.

|                                                                                                                                                                                                                       | II () www.inaut.sc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                        | -1,0000,20120701,100111                                                                                                                                                                                                                   | iow i i dat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | M                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| Peptide Su                                                                                                                                                                                                            | mnary Report                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |
| Format As                                                                                                                                                                                                             | Peptide Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                           | Help                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                    |
|                                                                                                                                                                                                                       | Significance threshold                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | p< 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Max. number o                                                                                                                                                                                                                                                                                                                                                                                                                          | f hits 20                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |
|                                                                                                                                                                                                                       | Standard scoring ()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MudDIT cooring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                        | meet out off 0                                                                                                                                                                                                                            | Shorr enh-sets 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |
|                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Mudrii sconig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                           | Show sub-sets 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |
|                                                                                                                                                                                                                       | Show pop-ups 💿 Su                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | appress pop-ups                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <ul> <li>Sort unassigned</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                    | Decreasing Score                                                                                                                                                                                                                          | Require bold red 🛄                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |
| Select All                                                                                                                                                                                                            | Select None Sea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | rch Selected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Firor tolerant                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |
|                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |
| L. <u>KAPC</u>                                                                                                                                                                                                        | BOVIN Mass: 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0594 Score                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | : 79 Matche                                                                                                                                                                                                                                                                                                                                                                                                                            | es: 1(1) Sequences:                                                                                                                                                                                                                       | 1(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                    |
| CAMP-                                                                                                                                                                                                                 | dependent protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | h kinase catal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ytic subunit al                                                                                                                                                                                                                                                                                                                                                                                                                        | lpha OS=Bos taurus G                                                                                                                                                                                                                      | N=PRK&C& PE=1 SV=3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |
| Chec)                                                                                                                                                                                                                 | to include this                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | hit in error                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | tolerant search                                                                                                                                                                                                                                                                                                                                                                                                                        | h                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |
|                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |
| Query                                                                                                                                                                                                                 | Observed Mr(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | expt) Mr(ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | lc) Delta Mi                                                                                                                                                                                                                                                                                                                                                                                                                           | ss Score Expect Ra                                                                                                                                                                                                                        | nk Unique Peptide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |
| ✓ 4                                                                                                                                                                                                                   | 1107.9039 2213                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .7933 2214.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 683 -0.2750                                                                                                                                                                                                                                                                                                                                                                                                                            | 0 80 8.5e-06                                                                                                                                                                                                                              | U R. <u>T</u> WTLCGT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PEYLAPEIILSK.G + P |
|                                                                                                                                                                                                                       | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ide matches to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | o guery 1                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |
|                                                                                                                                                                                                                       | Ton scoring nent:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |
| Prote                                                                                                                                                                                                                 | Top scoring pept:<br>Score greater the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | an 30 indicate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | es homology                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |
| Prote                                                                                                                                                                                                                 | Top scoring pept:<br>Score greater the<br>Score greater the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | an 30 indicato<br>an 42 indicato                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | es homology<br>es identity                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |
| Prote<br>KAPCJ<br>CAMP-                                                                                                                                                                                               | Top scoring pept:<br>Score greater the<br>Score greater the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | an 30 indicato<br>an 42 indicato                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | es homology<br>es identity                                                                                                                                                                                                                                                                                                                                                                                                             | Pentide                                                                                                                                                                                                                                   | PREACA PE=2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SV=3               |
| Prote<br>KAPCA<br>CAMP-                                                                                                                                                                                               | Top scoring pept:<br>Score greater the<br>Score greater the<br>Score Expect<br>80.4 8.5e-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | an 30 indicat<br>an 42 indicat<br>Delta Hi<br>-0.2750                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | es homology<br>es identity<br><b>t Protein</b><br>1 KAPCA BOVIN                                                                                                                                                                                                                                                                                                                                                                        | Peptide<br>R.TWTLCGTPEYLAPEIII                                                                                                                                                                                                            | PRKACA PE=2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SV=3               |
| Proto<br><u>KAPC</u><br>CAMP-<br><u>KAPC</u>                                                                                                                                                                          | Top scoring pept:<br>Score greater the<br>Score greater the<br>Score Expect<br>80.4 8.5e-06<br>76.9 1.9e-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | an 30 indicat<br>an 42 indicat<br>Delta Hi<br>-0.2750<br>-0.2750                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | es homology<br>es identity<br>t <b>Protein</b><br>1 KAPCA_BOVIN<br>1 KAPCA_BOVIN                                                                                                                                                                                                                                                                                                                                                       | <b>Peptide</b><br>R. <u>T</u> WTLCGTPEYLAPEIII<br>R.TW <u>T</u> LCGTPEYLAPEIII                                                                                                                                                            | PRKACA PE=2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SV=3               |
| Prote<br>KAPC,<br>CAMP-<br>KAPC,<br>CAMP-                                                                                                                                                                             | Top scoring pept:<br>Score greater the<br>Score greater the<br>Score Expect<br>80.4 8.5e-06<br>76.9 1.9e-05<br>38.7 0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | an 30 indicate<br>an 42 indicate<br>-0.2750<br>-0.2750<br>-0.2750                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | es homology<br>es identity<br>t Protein<br>1 KAPCA_BOVIN<br>1 KAPCA_BOVIN<br>1 KAPCA_BOVIN                                                                                                                                                                                                                                                                                                                                             | Peptide<br>R. <u>T</u> WTLCGTPEYLAPEIII<br>R.TW <u>T</u> LCGTPEYLAPEIII<br>R.TWTLCG <u>T</u> PEYLAPEIII                                                                                                                                   | PRKACA PE=2<br>.SK.G<br>.SK.G N=PRKACA PE=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SV=3<br>2 SV=2     |
| <b>Ргоt</b> с<br><u>КАРС</u><br>сАМР-<br><u>КАРС</u><br>сАМР-<br><u>КАРС</u>                                                                                                                                          | Top scoring pept:<br>Score greater the<br>Score greater the<br>80.4 8.5e-06<br>76.9 1.9e-05<br>38.7 0.13<br>18.0 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | an 30 indicate<br>an 42 indicate<br><b>Delta Hi</b><br>-0.2750<br>-0.2750<br>-0.2750<br>-0.2750                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | es homology<br>es identity<br>t Protein<br>1 KAPCA_BOVIN<br>1 KAPCA_BOVIN<br>1 KAPCA_BOVIN<br>1 KAPCA_BOVIN                                                                                                                                                                                                                                                                                                                            | Peptide<br>R.TWTLCGTPEYLAPEIII<br>R.TWTLCGTPEYLAPEIII<br>R.TWTLCGTPEYLAPEIII<br>R.TWTLCGTPEYLAPEII                                                                                                                                        | PRKACA PE=2<br>.SK.G<br>.SK.G<br>N=PRKACA PE=<br>.SK.G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SV=3<br>2 SV=2     |
| <b>Ргоt</b> е<br><u>КАРС</u> ,<br>сАМР-<br><u>КАРС</u> ,<br>сАМР-<br>сАМР-                                                                                                                                            | Top scoring pept:<br>Score greater the<br>Score greater the<br>Score Expect<br>80.4 8.5e-06<br>76.9 1.9e-05<br>38.7 0.13<br>18.0 15<br>12.6 51<br>12.6 51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | an 30 indicate<br>an 42 indicate<br><b>Delta Hi</b><br>-0.2750<br>-0.2750<br>-0.2750<br>-0.2750<br>-0.2750<br>-0.2750<br>-0.2111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | es homology<br>es identity<br>t Protein<br>1 KAPCA_BOVIN<br>1 KAPCA_BOVIN<br>1 KAPCA_BOVIN<br>3 GSA_XYLFT<br>2 CSA_YVLFT                                                                                                                                                                                                                                                                                                               | Peptide<br>R.TWILCGTPEYLAPEIII<br>R.TWILCGTPEYLAPEIII<br>R.TWILCGTPEYLAPEIII<br>K.GGSGMLTLGTPSSPGV<br>P.GGSGMLTLGTPSSPGV                                                                                                                  | PRKACA PE=2<br>.SK.G<br>.SK.G<br>.SK.G<br>N=PRKACA PE=<br>.SK.G<br>.AELSK.L<br>CA PE=1 SV=2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SV=3<br>2 SV=2     |
| Prote<br>KAPC,<br>CAMP-<br>KAPC,<br>CAMP-<br>KAPC,<br>KAPC,                                                                                                                                                           | Top scoring pept:<br>Score greater that<br>Score greater that<br>Score Expect<br>80.4 8.5e-06<br>76.9 1.9e-05<br>38.7 0.13<br>18.0 15<br>12.6 51<br>12.6 51<br>12.6 51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | an 30 indicat.<br>an 42 indicat.<br>Delta Him<br>-0.2750<br>-0.2750<br>-0.2750<br>-0.2750<br>-0.2750<br>-0.2111<br>-0.2111<br>-0.2111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | mology identity KAPCA_BOVIN KAPCA_BOVIN KAPCA_BOVIN KAPCA_BOVIN KAPCA_BOVIN GSA_XYLFT GSA_XYLFT GSA_YVLFT                                                                                                                                                                                                                                                                                                                              | Peptide<br>R.TWILCGTPEYLAPEIII<br>R.TWILCGTPEYLAPEIII<br>R.TWILCGTPEYLAPEII<br>R.TWILCGTPEYLAPEII<br>K.GGSGHLTLGIPSSPOH<br>K.GGSGHLTLGIPSSPOH<br>K.GGSGHLTLGIPSSPOH                                                                       | PRKACA PE=2<br>.SK.G<br>.SK.G<br>.SK.G<br>.SK.G<br>ALSK.L<br>CA PE=1 SV=2<br>AELSK.L<br>DETSV.L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SV=3<br>2 SV=2     |
| Prote<br>KAPC<br>CAMP-<br>KAPC<br>CAMP-<br>KAPC<br>CAMP-<br>KAPC<br>CAMP-                                                                                                                                             | Top scoring pept:<br>Score greater th<br>Score greater th<br>80.4 8.5e-06<br>76.9 1.9e-05<br>38.7 0.13<br>18.0 15<br>12.6 51<br>12.6 51<br>12.6 51<br>12.6 51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | an 30 indicat.<br><b>Delta Hi</b><br>-0.2750<br>-0.2750<br>-0.2750<br>-0.2750<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | es homology<br>es identity<br>t Protein<br>1 KAPCA_BOVIN<br>1 KAPCA_BOVIN<br>1 KAPCA_BOVIN<br>3 GSA_XYLFT<br>3 GSA_XYLFT<br>2 GSA_XYLFT<br>2 GSA_XYLFN                                                                                                                                                                                                                                                                                 | Peptide<br>R.TWILCGTPEYLAPEIII<br>R.TWILCGTPEYLAPEII<br>R.TWILCGTPEYLAPEII<br>K.GGSGHLILGIPSSPOVI<br>K.GGSGHLILGIPSSPOVI<br>K.GGSGHLILLGIPSSPOVI                                                                                          | PRKACA PE=2<br>.SK.G<br>.SK.G<br>.SK.G<br>AELSK.L CA PE=1 SV=2<br>AELSK.L<br>AELSK.L<br>AELSK.L<br>AELSK.L<br>AELSK.L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SV=3<br>2 SV=2     |
| Prote<br>KAPC,<br>CAMP-<br>KAPC,<br>CAMP-<br>KAPC,<br>CAMP-<br>KAPC,                                                                                                                                                  | Top scoring pept:<br>Score greater the<br>Score greater the<br>Score greater the<br>Core Expect<br>80.4 8.5e-06<br>76.9 1.9e-05<br>38.7 0.13<br>18.0 15<br>12.6 51<br>12.6 51<br>12.6 51<br>12.6 51<br>11.9 61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | an 30 indicat:<br><b>Delta Hi</b><br>-0.2750<br>-0.2750<br>-0.2750<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | es identity<br>t Protein<br>1 KAPCA_BOVIN<br>1 KAPCA_BOVIN<br>1 KAPCA_BOVIN<br>1 KAPCA_BOVIN<br>3 GSA_XYLFT<br>2 GSA_XYLFT<br>2 GSA_XYLFT<br>3 GSA_XYLFT                                                                                                                                                                                                                                                                               | Peptide<br>R. UTLCGTPEYLAPEIII<br>R. TUTLCGTPEYLAPEII<br>R. TUTLCGTPEYLAPEII<br>R. TUTLCGTPEYLAPEII<br>K. GGSGMLTLGTPSSPOVI<br>K. GGSGMLTLGTPSSPOVI<br>K. GGSGMLTLGTPSSPOVI                                                               | PRKACA PE=2<br>SK.G<br>SK.G<br>SK.G<br>AELSK.L<br>AELSK.L<br>AELSK.L<br>AELSK.L<br>AELSK.L<br>AELSK.L<br>AELSK.L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SV=3<br>2 SV=2     |
| Proto<br>KAPCJ<br>CANP-<br>KAPCJ<br>CANP-<br>KAPCJ<br>CANP-<br>KAPCJ<br>CANP-<br>KAPCJ<br>CANP-                                                                                                                       | Top scoring pept:<br>Score greater the<br>Score greater the<br>Score Bayest<br>80.4 8.5e-06<br>76.9 1.9e-05<br>38.7 0.13<br>18.0 15<br>12.6 51<br>12.6 51<br>12.6 51<br>12.6 51<br>11.9 61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | an 30 indicat.<br><b>Delta Hii</b><br>-0.2750<br>-0.2750<br>-0.2750<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | == homology<br>es identity<br>t Protein<br>1 KAPCA_BOVIN<br>1 KAPCA_BOVIN<br>1 KAPCA_BOVIN<br>3 GSA_XYLFT<br>3 GSA_XYLFT<br>2 GSA_XYLFM<br>3 GSA_XYLFM<br>3 GSA_XYLFT                                                                                                                                                                                                                                                                  | Peptide<br>R.IWILGTPEYLAPEIII<br>R.TWILGTPEYLAPEIII<br>R.TWILGTPEYLAPEIII<br>R.TWILGTPEYLAPEII<br>K.GGSCHILGIPSSPOVI<br>K.GGSCHILGIPSSPOVI<br>K.GGSCHILGIPSSPOVI<br>K.GGSCHILIGIPSSPOVI                                                   | PRKACA PE=2<br>SK.G<br>N=PRKACA PE=2<br>SK.G<br>N=PRKACA PE=2<br>SK.G<br>N=PRKACA PE=2<br>N=PRKACA PE=1<br>N=PRKACA PE=1<br>N=N<br>N=N<br>N=N<br>N=N<br>N=N<br>N=N<br>N=N<br>N=N<br>N=N<br>N=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SV=3<br>2 SV=2     |
| Prote           KAPC.           cAMP-           KAPC.           cAMP-           KAPC.           cAMP-           KAPC.           cAMP-           KAPC.           cAMP-           KAPC.           cAMP-           KAPC. | Top scoring pept:           Score greater th           Score greater th           Score greater th           B0.4 6.5e-06           76.9 1.9e-05           38.7 0.13           18.0 15           12.6 51           12.6 51           12.6 51           12.6 51           12.6 51           12.6 51           12.9 61           11.9 61           11.9 61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | an 30 indicat.<br>an 42 indicat.<br>Delta Hii<br>-0.2750<br>-0.2750<br>-0.2750<br>-0.2750<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | == homology<br>es identity<br>t Protein<br>1 KAPCA_BOVIN<br>1 KAPCA_BOVIN<br>1 KAPCA_BOVIN<br>3 GSA_XVLFT<br>3 GSA_XVLFT<br>3 GSA_XVLFT<br>3 GSA_XVLFT<br>3 GSA_XVLFT<br>3 GSA_XVLFT                                                                                                                                                                                                                                                   | Peptide<br>R.TWILGGTPEYLAPEIII<br>R.TWILGGTPEYLAPEII<br>R.TWILGTPEYLAPEII<br>K.GGSGMLIGJPSSFOW<br>K.GGSGMLIGJPSSFOW<br>K.GGSGMLIGJPSSFOW<br>K.GGSGMLIGJPSSFOW<br>K.GGSGMLIGJPSSFOW<br>K.GGSGMLIGJPSSFOW                                   | PRKACA PE=2<br>SK.G<br>SK.G<br>N=PRKACA PE=3<br>SK.G<br>AELSK.L<br>CA PE=1 SV=3<br>AELSK.L<br>CA PE=1 SV=3<br>AELSK.L<br>PE=1 SV=4<br>(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SV=3<br>2 SV=2     |
| Prote<br>KAPC,<br>CAMP-<br>KAPC,<br>CAMP-<br>KAPC,<br>CAMP-<br>KAPC,<br>CAMP-<br>KAPC,                                                                                                                                | Top scoring pept:<br>Score greater the<br>Score greater the<br>Score Bayeot<br>80.4 8.5e-06<br>76.9 1.9e-05<br>12.6 51<br>12.6 51<br>12.6 51<br>12.6 51<br>11.9 61<br>11.9 61<br>11.9 61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | an 30 indicat.<br>an 42 indicat.<br>Delta Hi<br>-0.2750<br>-0.2750<br>-0.2750<br>-0.2750<br>-0.2750<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.211<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.211                 | == homology<br>== identity<br>t Protein<br>1 KAPCA_BOVIN<br>1 KAPCA_BOVIN<br>1 KAPCA_BOVIN<br>1 KAPCA_BOVIN<br>3 GSA_XVLFT<br>3 GSA_XVLFT<br>3 GSA_XVLFT<br>79 Matches:<br>79 Matches:                                                                                                                                                                                                                                                 | Peptide<br>R. TUTLCGTPEYLAPEIII<br>R. TUTLCGTPEYLAPEIII<br>R. TUTLCGTPEYLAPEIII<br>K. GOSCMLTLCTPSSPOW<br>K. GOSCMLTLCTPSSPOW<br>K. GOSCMLTLCHSSPOW<br>K. GOSCMLTLCTPSSPOW<br>K. GOSCMLTLCTPSSPOW<br>III Sequences II<br>III Sequences II | PRKACA PE=2<br>SK.G<br>SK.G<br>N=PRKACA PE=2<br>SK.G<br>N=PRKACA PE=2<br>N=PRKACA PE=1<br>N=PRKACA PE=1<br>N=PRK   | 5V=3<br>2 5V=2     |
| Prote<br>KAPC,<br>CAMP-<br>KAPC,<br>CAMP-<br>KAPC,<br>CAMP-<br>KAPC,<br>CAMP-<br>KAPC,                                                                                                                                | Top scoring pept:<br>Score greater the<br>Score greater the<br>Score greater the<br>Association of the<br>Score States of | an 30 indicat.<br>an 42 indicat.<br>Delta Hi<br>-0.2750<br>-0.2750<br>-0.2750<br>-0.2750<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.2111<br>-0.211<br>-0.211<br>-0.211<br>-0.211<br>-0.211<br>-0.211<br>-0.211<br>-0.211<br>-0.211<br>-0.211<br>-0.211<br>-0.211<br>-0.211<br>-0.211<br>-0.211<br>-0.211<br>-0.211<br>-0.211<br>-0.211<br>-0.211<br>-0.211<br>-0.211<br>-0.211<br>-0.211<br>-0.211<br>-0.211<br>-0.211<br>-0.211<br>-0.211<br>-0.211<br>-0.211<br>-0.211<br>-0.211<br>-0.211<br>-0.211<br>-0.211<br>-0.211<br>-0.211<br>-0.211<br>-0.211<br>-0.211<br>-0.211<br>-0.211<br>-0.211<br>-0.211<br>-0.211<br>-0.211<br>-0.211<br>-0.211<br>-0.211<br>-0.211<br>-0.211<br>-0.211<br>-0.211<br>-0.211<br>-0.211<br>-0.211<br>-0.211<br>-0.211<br>-0.211<br>-0.211<br>-0.211<br>-0.211<br>-0.211<br>-0.211<br>-0.211<br>-0.211<br>-0.211<br>-0.211<br>-0.211<br>-0.211<br>-0.211<br>-0.211<br>-0.211 | monology           sidentity           t         Protein           1         KAPCA_BOVIN           1         KAPCA_BOVIN           1         KAPCA_BOVIN           3         GSA_XVLFT           3         GSA_XVLFT           2         GSA_XVLFT           2         GSA_XVLFT           3         GSA_XVLFT           3         GSA_XVLFT           3         GSA_XVLFT           3         GSA_XVLFT           3         GSA_XVLFT | Peptide<br>R.TuTLGGTPEYLAPEIII<br>R.TuTLGGTPEYLAPEII<br>R.TuTLGGTPEYLAPEII<br>K.GSGMLLGPESPOW<br>K.GSGMLLGPESPOW<br>K.GSGMLLGPESPOW<br>K.GSGMLLGPESPOW<br>K.GSGMLLGPESPEW<br>I.GSGMLLGPESPOW                                              | PRKACA PE=2<br>SK.G<br>SK.G<br>N=PRKACA PE=3<br>SK.G<br>N=PRKACA PE=1<br>SK.G<br>N=PRKACA PE=1<br>SK.G<br>N=PRKACA PE=2<br>N=PRKACA PE=3<br>N=PRKACA | SV=3<br>2 SV=2     |

However, casein peptides are unusually easy to analyse. Here is a more typical example of what you can expect to find - a strong match to a phosphopeptide from a protein kinase.

There is little to choose in terms of score between having the phosphate on T1 or T3.



We can see why there is little difference in score between placing the phosphate on T1 or T3. There is just one extra matched peak, and in probability terms, there isn't a huge difference between 20 matches using 55 experimental peaks and 21. However, if you had to choose one or the other, you'd probably go for T1



|                      | or 62 ppm                               |            | Mass                                  | s (Da)                  |              | <br>2 |
|----------------------|-----------------------------------------|------------|---------------------------------------|-------------------------|--------------|-------|
|                      |                                         |            |                                       |                         |              |       |
| (udd)                | 1                                       | ÷.,        |                                       |                         |              |       |
| 2 -70                | 1                                       |            |                                       |                         |              |       |
| <sup>ነ</sup> -80     | <b>+</b>                                |            | •                                     |                         |              |       |
| -90                  | +++++++++++++++++++++++++++++++++++++++ | E00        | 4000                                  |                         |              |       |
| RMS err              | or 62 ppm                               | 500        | 1000 1500<br>Mas:                     | s (Da)                  |              |       |
| NCBI                 | BLAST sea                               | rch of T   | WILCGTPEYLAPEIILSK                    |                         |              |       |
| (Paran               | neters: blastp                          | , nr prote | in database, expect=20000, no filter, | PAM30)                  |              |       |
| Other                | BLAST web                               | gateway    | <u>s</u>                              |                         |              |       |
| Allma                | tches to thi                            | s ouerv    |                                       |                         |              |       |
|                      |                                         | 1          |                                       |                         |              |       |
| Score                | Mr(calc)                                | Delta      | Sequence                              | Site Analysis           |              |       |
| 80.4                 | 2214.0683                               | -0.2750    | TWTLCGTPEYLAPEIILSK                   | Phospho T1 69.17%       |              |       |
| 76.9                 | 2214.0683                               | -0.2750    | TWTLCGTPEYLAPEIILSK                   | Phospho T3 30.83%       |              |       |
| 38.7                 | 2214.0683                               | -0.2750    | TWTLCGTPEYLAPEIILSK                   | Phospho T7 0.00%        |              |       |
| 18.0                 | 2214.0683                               | -0.2750    | TWTLCGTPEYLAPEIILSK                   | Phospho Y10 0.00%       |              |       |
| 12.6                 | 2214.0044                               | -0.2111    | GGSGMLTLGIPSSPGVPAELSK                |                         |              |       |
| 12.6                 | 2214.0044                               | -0.2111    | GGSGMLTLGIPSSPGVPAELSK                |                         |              |       |
| 12.6                 | 2214.0044                               | -0.2111    | GGSGMLTLGLPSSPGVPAELSK                |                         |              |       |
|                      | 2214.0044                               | -0.2111    | GGSGMLTLGLPSSPGVPAELSK                |                         |              |       |
| 12.6                 | 2214.0044                               | -0.2111    | GGSGMLTLGIPSSPGVPAELSK                |                         |              |       |
| 12.6<br>11.9         | 2214.0044                               | -0.2111    | GGSGMLTLGIPSSPGVPAELSK                |                         |              |       |
| 12.6<br>11.9<br>11.9 |                                         |            |                                       |                         |              | <br>  |
| 12.6<br>11.9<br>11.9 |                                         |            | Maccat: b                             | ttp://www.matrixscience | <u>.com/</u> |       |
| 12.6<br>11.9<br>11.9 |                                         |            | Mascot.                               | -                       |              |       |

The delta score site analysis suggests 70% probability on T1 and 30% on T3 ... much less clear cut. We can't be confident which site is modified, or whether there is a mixture of both isoforms. But, we can be confident it is not on T7 or Y10 because the score drops dramatically, and these are assigned 0% probability.

Sometimes, it is worth looking at the sequence annotations to see whether these are known phosphorylation sites. If the database sequence doesn't have detailed annotations, you can follow the BLAST link to try and match the peptide to an entry from a better annotated database. In this case, we're searching SwissProt, so we can go straight to the protein view report

| <pre>Fi NOU_RED 19 19 19 100 photocollate (by Shiftar Ky). Fi NOU_RES 100 140 Phosphostine (by Shiftar Ky). FI NOU_RES 100 140 Phosphostine (by Shiftar Ky). FI NOU_RES 100 140 Phosphostine. FI NOU_RES 100 19 Phosphostine. FI NOU_RES 200 200 Phosphostine. FI CONFLICT 200 200 F -&gt; N (in Ref. 4; AA sequence). FI CONFLICT 200 200 F -&gt; N (in Ref. 4; AA sequence). FI CONFLICT 200 200 F -&gt; N (in Ref. 4; AA sequence). FI CONFLICT 200 200 F -&gt; N (in Ref. 4; AA sequence). FI CONFLICT 200 200 F -&gt; N (in Ref. 4; AA sequence). FI CONFLICT 200 200 F -&gt; N (in Ref. 4; AA sequence). FI CONFLICT 200 200 F -&gt; N (in Ref. 4; AA sequence). FI CONFLICT 200 200 F -&gt; N (in Ref. 4; AA sequence). FI CONFLICT 200 200 F -&gt; N (in Ref. 4; AA sequence). FI CONFLICT 200 200 F -&gt; N (in Ref. 4; AA sequence). FI CONFLICT 200 200 F -&gt; N (in Ref. 4; AA sequence). FI CONFLICT 200 200 F -&gt; N (in Ref. 4; AA sequence). FI T STRAND 54 63 FI THELIX 16 32 FI THELIX 16 32 FI THELIX 16 14 143 FI STRAND 144 52 FI THELIX 16 14 143 FI STRAND 144 52 FI THELIX 129 136 FI THELIX 129 136 FI THELIX 129 136 FI THELIX 200 201 FI THELIX 200 201 FI THELIX 200 201 FI THELIX 200 201 FI THELIX 200 203 FI THELIX 200 203 FI THELIX 200 204 FI THELIX 200 204 FI THELIX 200 205 FI THELIX 200</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <pre>Find Decks 140 From Find Phosphoet Control (by Sharks typ). Find Decks 140 From Find Phosphoet (by Sharks typ). Find Decks 150 150 Find Phosphoet (by Sharks typ). Find Decks 120 20 From Find Phosphoet (by Sharks typ). Find Decks 120 20 20 From Find Phosphoet (by Sharks typ). Find Decks 120 20 20 20 From Find Phosphoet (b) find Find Find Find Find Find Find Find F</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4         | ⇒ C 🖷      | 🛇 www. | matrixscien | ce.com/cgi/protein_view.pl?file=%2Fdata%2F20120704%2FFtGmIfewT.dat&hit=KAPCA_BOVIN&db_ 🏠 | 3 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------------|--------|-------------|------------------------------------------------------------------------------------------|---|
| if         NOT_RES         196         Phosphothreonine (by similarity). = T1           FT         NOT_RES         196         Phosphothreonine (by similarity). = T3           FT         NOT_RES         202         202         Phosphothreonine (by similarity). = T3           FT         NOT_RES         303         Phosphothreonine (by similarity). = T3           FT         NUTAEN         3         N-bytistoylation.           FT         NUTAEN         3         N-bytistoylation.           FT         COMFLICT         202         202         T -> N (in Ref. 4; Ak sequence).           FT         COMFLICT         204         E -> Q (in Ref. 4; Ak sequence).           FT         COMFLICT         205         205         L -> S (in Ref. 4; Ak sequence).           FT         TC         COMFLICT         207         N -> D (in Ref. 4; Ak sequence).           FT         TELIX         14         43           FT         TELIX         14         43           FT         STEAMD         54         63           FT         STEAMD         14         12           FT         STEAMD         141         12           FT         STEAMD         141         12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <pre>if woo-EES 196 196</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | FT        | MOD DES    | 140    | 140         | Phosphochical (by Similarity).                                                           | 2 |
| <pre>Fit NOD_PES is0 100 Phosphothreonime.(by PDFK1.<br/>FT NOD_PES 302 202 Phosphothreonime.(by PDFK1.<br/>FT NOD_PES 303 339 Phosphoterine.<br/>FT NUTACEN 3 3 N-&gt;D: No myristoylation.<br/>FT NUTACEN 3 3 N-&gt;D: No myristoylation.<br/>FT CONFLICT 202 202 T -&gt; N (in Ref. 4; Ak sequence).<br/>FT CONFLICT 204 204 E -&gt; Q (in Ref. 4; Ak sequence).<br/>FT CONFLICT 204 206 L -&gt; S (in Ref. 4; Ak sequence).<br/>FT CONFLICT 206 206 L -&gt; S (in Ref. 4; Ak sequence).<br/>FT CONFLICT 207 287 N -&gt; D (in Ref. 2; Ak sequence).<br/>FT CONFLICT 208 287 N -&gt; D (in Ref. 2; Ak sequence).<br/>FT STRAND 44 52<br/>FT STRAND 54 63<br/>FT STRAND 54 63<br/>FT STRAND 54 63<br/>FT STRAND 54 63<br/>FT STRAND 107 112<br/>FT STRAND 114 122<br/>FT STRAND 114 122<br/>FT STRAND 114 123<br/>FT STRAND 114 124<br/>FT STRAND 114 125<br/>FT STRAND 114 125<br/>FT STRAND 114 126<br/>FT HELIX 208 203<br/>FT HELIX 208 203</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <pre>FT HOUTRES 198 198 FPGsphothreoning: by PDFH1. ')' = T3 FT HOUTRES 202 202 Phosphothreoning (By similarity). = T3 FT HOUTRES 339 339 Phosphothreoning (By similarity). = T3 FT HOUTREN 3 3 N-&gt;D: No myristoylation. FT CONFLICT 204 204 E -&gt; 0 (in Ref. 4; AA sequence). FT CONFLICT 205 205 T -&gt; N (in Ref. 4; AA sequence). TT CONFLICT 205 206 L -&gt; 0 (in Ref. 4; AA sequence). TT CONFLICT 206 206 L -&gt; 0 (in Ref. 4; AA sequence). TT CONFLICT 207 207 N -&gt; D (in Ref. 4; AA sequence). TT CONFLICT 208 206 N -&gt; D (in Ref. 4; AA sequence). TT CONFLICT 208 206 L -&gt; 0 (in Ref. 4; AA sequence). TT TUNN 644 66 FT STRAND 44 52 FT HELIX 11 43 FT HELIX 11 43 FT HELIX 11 43 FT HELIX 129 203 TT STRAND 54 63 FT HELIX 129 123 FT HELIX 203 205 FT HELIX 129 123 FT HELIX 203 205 FT HELIX 203 205 FT HELIX 204 204 FT HELIX 203 205 FT HELIX 203 205 FT HELIX 204 204 FT HELIX 203 205 FT HELIX 203 307 FT HELIX 204 204 FT HELIX 204 204 FT HELIX 204 204 FT HELIX 204 204 FT HELIX 204 205 FT HELIX 206 211 FT HELIX 206 214 FT HELIX 206 214 FT HELIX 206 214 FT HELIX 206 214 FT HELIX 206 203 FT HELIX 206 204 FT HELIX 206 204 FT HELIX 206 205 FT HELIX 206 FT HELIX 206 205 FT HELIX 206 FT HELIX 206</pre>                                                                                                                                                                                                                                                                                                                                       | FT        | MOD_RES    | 196    | 196         | Phosphothraphics (By similarity) - T1                                                    | _ |
| <pre>Find box bits is a box box provide (by similarity). = T3 Find box bits is a box box provide (by similarity). = T3 Find box box bits is a box box bits box bits box box box box box box box box box box</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <pre>11 BIO 7E2 352 152 150 FROM DUPLICATION DY FURT.<br/>11 BIO 7E2 353 339 FROM DUPLICATION DY FURT.<br/>11 BIO 7E2 339 FROM DUPLICATION DY FURT.<br/>11 BIO 7E2 339 FROM DUPLICATION DY FURT.<br/>11 BIO 7E2 353 SUBJECT STATES<br/>11 CONFLICT 202 202 T -&gt; N (in Ref. 4; Ak sequence).<br/>11 CONFLICT 204 204 L -&gt; Q (in Ref. 4; Ak sequence).<br/>11 CONFLICT 206 206 L -&gt; S (in Ref. 4; Ak sequence).<br/>11 CONFLICT 207 N -&gt; D (in Ref. 4; Ak sequence).<br/>11 CONFLICT 207 Q 207 N -&gt; D (in Ref. 4; Ak sequence).<br/>11 CONFLICT 207 Q 207 N -&gt; D (in Ref. 4; Ak sequence).<br/>11 CONFLICT 207 Q 207 N -&gt; D (in Ref. 4; Ak sequence).<br/>11 CONFLICT 207 Q 207 N -&gt; D (in Ref. 4; Ak sequence).<br/>11 CONFLICT 207 Q 207 N -&gt; D (in Ref. 4; Ak sequence).<br/>11 STRAND 44 53<br/>11 STRAND 44 63<br/>11 STRAND 54 66<br/>11 STRAND 107 112<br/>11 STRAND 107 112<br/>11 STRAND 107 112<br/>11 STRAND 107 113<br/>11 STRAND 114 123<br/>11 HELIX 209 233<br/>11 HELIX 209 234<br/>11 HELIX 209 234<br/>11 HELIX 209 234<br/>11 HELIX 209 235<br/>11 HELIX 209 235<br/>12 HELIX 209 235<br/>13 HELIX 209 235<br/>14 HELIX 209 235<br/>15 HELIX 209 240 HEL</pre>                                                                      | F I<br>FT | MOD_RES    | 100    | 100         | Phosphotheonine (by Shillarity).                                                         |   |
| / HOU RLS 202 202 Phosphoterionine (by Similarity) + + + + + + + + + + + + + + + + + +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <pre>// HOUPAGE 202 202 Prosphormeon.he (by Similarity)</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | F 1       | NOD_RES    | 198    | 198         | Phosphothreenine; by $PDrk1$ . = T3                                                      |   |
| <pre>Fi NOU ALS 339 339 FindBindSetInE.<br/>Fi LUFID 2 N=Wristoy1glyCinE.<br/>FT COMFLICT 202 202 N=&gt;&gt;N (mpRi) (ylpCinE.<br/>FT COMFLICT 204 204 E =&gt; (in Ref. 4) AA sequence).<br/>FT COMFLICT 204 206 L =&gt; S (in Ref. 4) AA sequence).<br/>FT COMFLICT 207 207 N =&gt; D (in Ref. 4) AA sequence).<br/>FT COMFLICT 207 207 N =&gt; D (in Ref. 4) AA sequence).<br/>FT COMFLICT 207 208 208 L =&gt; S (in Ref. 4) AA sequence).<br/>FT COMFLICT 208 208 L =&gt; S (in Ref. 4) AA sequence).<br/>FT COMFLICT 208 208 L =&gt; S (in Ref. 4) AA sequence).<br/>FT COMFLICT 208 208 L =&gt; S (in Ref. 4) AA sequence).<br/>FT STRAND 54 63<br/>FT STRAND 54 63<br/>FT STRAND 54 63<br/>FT STRAND 107 112<br/>FT HELIX 108 696<br/>FT STRAND 107 112<br/>FT HELIX 129 136<br/>FT STRAND 107 112<br/>FT HELIX 129 136<br/>FT HELIX 141 160<br/>FT HELIX 129 136<br/>FT HELIX 208 211<br/>FT HELIX 208 211<br/>FT HELIX 208 211<br/>FT HELIX 208 201<br/>FT HELIX 208 203<br/>FT HELIX 303 307<br/>FT HELIX 303 307<br/>FT HELIX 304 307<br/>FT HELIX 305 307<br/>FT HELIX 305 307<br/>FT HELIX 306 307<br/>FT HELIX 209 233<br/>FT HELIX 140 CON FY SPDD227D2DEFESD CRC54!<br/>SGMALAKKG SRCSWKFL AKAREPILKK WENPLONTAH LOVERINTL GYSGROWL<br/>SGMALAKKG SRCSWKFL AKAREPILKK WENPLONTAH LOVERINTL GYSGROWL SINGKKFL AKAREPILKK WENPLONTAH SUFFRENCES F</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <pre>FI NOU RES 333 333 730 Prosposerine:<br/>FI LUTED 3 1 N-D: No mytacoyl giycine.<br/>FT CONFLICT 204 204 F -&gt; 0 (in Ref. 4; Ak sequence).<br/>FT CONFLICT 206 206 L -&gt; 8 (in Ref. 4; Ak sequence).<br/>FT CONFLICT 206 206 L -&gt; 8 (in Ref. 4; Ak sequence).<br/>FT CONFLICT 207 N -&gt; D (in Ref. 4; Ak sequence).<br/>FT CONFLICT 207 N -&gt; D (in Ref. 4; Ak sequence).<br/>FT T TURN 64 66<br/>FT STRAND 44 52<br/>FT HELIX 16 726<br/>FT STRAND 54 63<br/>FT STRAND 144 122<br/>FT HELIX 167 76<br/>FT STRAND 144 122<br/>FT HELIX 167 76<br/>FT STRAND 144 122<br/>FT HELIX 167 76<br/>FT STRAND 173 175<br/>FT STRAND 173 175<br/>FT STRAND 181 183<br/>FT HELIX 203 205<br/>FT HELIX 204 273<br/>FT HELIX 204 273<br/>FT HELIX 205 211<br/>FT HELIX 205 211<br/>FT HELIX 206 211<br/>FT HELIX 206 211<br/>FT HELIX 206 211<br/>FT HELIX 206 211<br/>FT HELIX 207 175<br/>FT STRAND 181 183<br/>FT HELIX 208 211<br/>FT HELIX 208 211<br/>FT HELIX 209 209<br/>FT HELIX</pre>                                | P I       | MOD_RES    | 202    | 202         | Phosphothreonine (By Similarity).                                                        |   |
| <pre>FI LP1D 2 2 2 N=myristoyl glycine.<br/>FT LVTACEN 3 N→D: No myristoyleton.<br/>TT CONFLICT 20 202 T→N (in Ref. 4; AA sequence).<br/>FT CONFLICT 20 20 0 L→S (in Ref. 4; AA sequence).<br/>FT CONFLICT 20 20 0 L→S (in Ref. 4; AA sequence).<br/>FT CONFLICT 20 20 0 L→S (in Ref. 4; AA sequence).<br/>FT CONFLICT 20 20 0 L→S (in Ref. 4; AA sequence).<br/>FT CONFLICT 20 20 0 L→S (in Ref. 4; AA sequence).<br/>FT CONFLICT 20 20 0 L→S (in Ref. 2; AA sequence and 3; AA<br/>sequence).<br/>FT HELIX 41 43<br/>FT STRAND 54 63<br/>FT TURN 64 66<br/>FT HELIX 77 52<br/>FT STRAND 69 76<br/>FT HELIX 86 96<br/>FT HELIX 10 10 112<br/>FT STRAND 10 112<br/>FT HELIX 20 205<br/>FT HELIX 203 205<br/>FT HELIX 203 205<br/>FT HELIX 203 205<br/>FT HELIX 204 233<br/>FT HELIX 204 253<br/>FT HELIX 206 231<br/>FT HELIX 206 235<br/>FT HELIX 206 235</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <pre>Ff L1P1D 2 2 2 N-myristoyl glychne. FT NUTACEN 3 3 N-myristoyl glychne. TT COMFLICT 202 202 T → N (in Ref. 4; AA sequence). TT COMFLICT 204 204 L → O (in Ref. 4; AA sequence). FT COMFLICT 205 204 L → O (in Ref. 4; AA sequence). FT COMFLICT 205 204 L → O (in Ref. 4; AA sequence). FT COMFLICT 207 207 S = S = S = S = S = S = S = S = S = S</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | FT        | MOD_RES    | 339    | 339         | Phosphoserine.                                                                           |   |
| FT NUTACEM 3 3 N-D: No myristoylation.<br>FT CORFLICT 202 Z - N (in Ref. 4; Ak sequence).<br>FT CORFLICT 203 204 E $\rightarrow$ S (in Ref. 4; Ak sequence).<br>FT CORFLICT 208 207 N $\rightarrow$ N (in Ref. 4; Ak sequence).<br>FT CORFLICT 208 207 N $\rightarrow$ D (in Ref. 2; Ak sequence and 3; Ak<br>FT CORFLICT 208 207 N $\rightarrow$ D (in Ref. 2; Ak sequence and 3; Ak<br>FT HELIX 14 32<br>FT HELIX 14 43<br>FT HELIX 14 44<br>FT STRAND 54 63<br>FT STRAND 54 66<br>FT STRAND 64 76<br>FT STRAND 107 112<br>FT HELIX 196 96<br>FT STRAND 107 112<br>FT HELIX 129 136<br>FT STRAND 114 122<br>FT HELIX 141 160<br>FT HELIX 141 160<br>FT HELIX 142 153<br>FT HELIX 209 205<br>FT STRAND 173 175<br>FT STRAND 181 183<br>FT HELIX 209 205<br>FT HELIX 209 205<br>FT HELIX 209 205<br>FT HELIX 200 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <pre>FT NUTACEN 3 3 N→D: No mytistoylation. TT COMFLICT 202 202 T → N (in Ref. 4; AA sequence). TT COMFLICT 204 204 E → O (in Ref. 4; AA sequence). TT COMFLICT 207 207 N→D (in Ref. 4; AA sequence). TT COMFLICT 207 207 N→D (in Ref. 4; AA sequence). TT COMFLICT 207 207 N→D (in Ref. 4; AA sequence). TT COMFLICT 207 207 N→D (in Ref. 4; AA sequence). TT COMFLICT 207 207 N→D (in Ref. 4; AA sequence). TT COMFLICT 207 207 N→D (in Ref. 4; AA sequence). TT COMFLICT 207 207 N→D (in Ref. 4; AA sequence). TT TURN 141 43 TT TURN 64 66 TT STRAND 54 63 TT STRAND 54 63 TT STRAND 54 63 TT HELIX 77 66 TT HELIX 170 172 TT HELIX 141 160 TT HELIX 141 160 TT HELIX 141 160 TT HELIX 203 205 TT HELIX 203 307 TT HELIX 203 307 TT HELIX 204 273 TT TURN 266 289 FT HELIX 296 298 FT HELIX 296 298 FT HELIX 296 298 FT HELIX 303 307 FT HELIX 346 348 S0 SEQUENCE 351 AA: 40620 HW; S9DDD227D2DEEESD CRC64; NGHAAKKG SPCSWERL AKAEPJEKK WENPANTAH LDC/FERIKIL GTOSFGRWHL NGHAKKKG SPCSWERL AKAEPJEKK WENPANTAH LDC/FERIKIL GTOSFGRWHL NGHAKKG SPCSWERL AKAEPJEKK WENPANTAH LDC/FERIKIL GTOSFGRWHL NGHAKHKG SPCSWERL AKAEPJEKK WENPANTAH LDC/FERIKILON TY NGHAKHKG SPCSWERL AKAEPJEKK WENPANTAH LDC/FERIKIL</pre>                                                                                                                                                                                                                                                                                                                                                              | FT        | LIPID      | 2      | 2           | N-myristoyl glycine.                                                                     |   |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <pre>FT COMFLICT 202 202 T → N (in Ref. 4; AA sequence).<br/>FT COMFLICT 204 204 L → O (in Ref. 4; AA sequence).<br/>FT COMFLICT 205 206 L → S (in Ref. 4; AA sequence).<br/>FT COMFLICT 207 N → D (in Ref. 4; AA sequence).<br/>FT COMFLICT 207 N → D (in Ref. 4; AA sequence).<br/>FT COMFLICT 207 N → D (in Ref. 4; AA sequence).<br/>FT STEAND 54 63<br/>FT STEAND 54 63<br/>FT STEAND 54 63<br/>FT STEAND 54 63<br/>FT STEAND 107 112<br/>FT STEAND 107 112<br/>FT HELIX 107 82<br/>FT STEAND 114 122<br/>FT HELIX 107 125<br/>FT STEAND 114 122<br/>FT HELIX 203 205<br/>FT HELIX 203 205<br/>FT HELIX 203 205<br/>FT HELIX 204 273<br/>FT HELIX 204 273<br/>FT HELIX 204 253<br/>FT HELIX 205 298<br/>FT HELIX 206 298<br/>FT HELIX 303 307<br/>FT HELIX 141 COMPACES CRC64;<br/>NGMAAKKG SUGENCEL AAREDFLEK WENPAONTAH LOOFERINTL GESFERVEL<br/>NGMAAKKG SUGENCEL AAREDFLEK WENPAONTAH LOOFERINTL FERSTROWL<br/>NGMAAKKG SUGENCEL AAREDFLEK WENPAONTAH LOOFERINTL FERSTROWL<br/>NGMAAKKG SUGENCEL AFAREDFLEK WENPAONTAH LOOFERINTLY WENPAONTAH LOOFER<br/>NGMAAKKG SUGENCEL AFAREDFLEK WENPAONTAH LOOFERINTLY FERSTROWEN<br/>NGMAAKKG SUGENCEL AFAREDFLEK WENPAONTAH LOOFERINTLY FERSTROWEN<br/>NGMAAKKG SUGENCEL AFAREDFLEK WENPAONTAH LOOFERINTLY FERSTROWEN<br/>NGMAAKKG SUGENCEL AFAREDFLEK WENPAONTAH LOOFERINT FERSTROWENPFF<br/>ADOPTOFFF ANNON AFAREDFLEKK WENPAONT</pre>                                                                                                                                                                                                        | FT        | MUTAGEN    | 3      | 3           | N->D: No myristoylation.                                                                 |   |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <pre>FT COMFLICT 204 204 E → 0 (in Ref. 4; AA sequence).<br/>FT COMFLICT 205 206 L → S (in Ref. 4; AA sequence).<br/>FT COMFLICT 205 207 N → D (in Ref. 2; AA sequence and 3; AA<br/>sequence).<br/>FT ELLIX 41 43<br/>FT HELIX 41 45<br/>FT STRAND 54 63<br/>FT STRAND 54 66<br/>FT STRAND 69 76<br/>FT HELIX 77 82<br/>FT HELIX 86 96<br/>FT STRAND 107 112<br/>FT STRAND 107 112<br/>FT STRAND 107 172<br/>FT HELIX 101 102<br/>FT HELIX 205 205<br/>FT HELIX 208 211<br/>FT HELIX 208 211<br/>FT HELIX 208 214<br/>FT HELIX 208 215<br/>FT HELIX 208 214<br/>FT HELIX 208 21</pre>                             | FT        | CONFLICT   | 202    | 202         | T -> N (in Ref. 4; AA sequence).                                                         |   |
| <pre>FT CONFLICT 206 206 L -&gt; S (in Ref. 4; AA sequence). FT CONFLICT 207 207 N -&gt; D (in Ref. 2; AA sequence). FT FT CONFLICT 207 N -&gt; D (in Ref. 2; AA sequence and 3; AA sequence). FT STEAMD 44 43 FT STEAMD 54 453 FT TUEN 54 55 FT STEAMD 69 76 FT HELIX 77 62 FT STEAMD 107 112 FT HELIX 186 96 FT STEAMD 107 112 FT HELIX 129 136 FT STEAMD 107 112 FT HELIX 141 160 FT HELIX 141 160 FT HELIX 141 160 FT HELIX 203 205 FT STEAMD 83 183 FT HELIX 203 205 FT HELIX 203 205 FT HELIX 204 253 FT HELIX 206 201 FT HELIX 206 201 FT HELIX 206 201 FT HELIX 206 201 FT HELIX 206 203 FT HELIX 141 100 FT HELIX 206 203 FT HELIX 206 203 FT HELIX 206 203 FT HELIX 141 100 FT HELIX 141 100 FT HELIX 206 203 FT HELIX 206 203 FT HELIX 206 203 FT HELIX 141 100 FT HELIX 206 203 FT HELIX 206 203 FT HELIX 206 203 FT HELIX 141 100 FT HELIX 206 203 FT HELIX 206 203 FT HELIX 206 203 FT HELIX 206 203 FT HELIX 141 100 FT HELIX 206 203 FT HELIX 206 FT HELIX 206 FT HELIX FT HEAPATAH LOPERITL FT HEAPATAH H</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <pre>FT CONFLICT 206 206 L → S (in Ref. 4; AA sequence). FT CONFLICT 287 N → D (in Ref. 4; AA sequence). FT CONFLICT 287 287 N → D (in Ref. 4; AA sequence and 3; AA sequence). FT HELIX 16 32 FT HELIX 14 43 FT STRAND 44 63 FT STRAND 54 66 FT STRAND 54 66 FT STRAND 107 112 FT HELIX 86 96 FT STRAND 114 122 FT HELIX 141 160 FT HELIX 295 234 FT HELIX 296 298 FT HELIX 303 307 FT HELIX 346 348 SO SQUENCE 351 AA; SODDAZ27DZDEEESD CRC64; NGMAAKKG SUCSYNCH AKARDPIKK WENPANTAR LDOFERIKTL GTOSTORVEL NGMAAKKG SUCSYNCH AKARDPIKK WENPANTAR LDOFERIKTL FTOSTORVEL NGMAAKKG SUCSYNCH HEDDAKKEL NHAD VUNCUUT EMACYPYF ADOPTOTYER NVGGYFFF HEDDAKKEL NHAD VUNCUUT EMACYPYFF ADOPTOTYER NVGGYFFF HEDDAKKEL NHAD VUNCUUT EMACYPYFF ADOPTOTYER NVGGYFFF HEDDAKKEL NHAD VEEELEVSI NEKCGKEFSE F</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | FT        | CONFLICT   | 204    | 204         | E -> Q (in Ref. 4; AA sequence).                                                         |   |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | FT CONFLICT 287 287 N → D (in Ref. 2; AA sequence and 3; AA<br>sequence).<br>FT HELIX 16 32<br>FT HELIX 41 43<br>FT STRAND 44 52<br>FT STRAND 54 63<br>FT STRAND 64 66<br>FT STRAND 144 52<br>FT STRAND 144 52<br>FT STRAND 144 52<br>FT STRAND 114 122<br>FT STRAND 114 123<br>FT HELIX 170 172<br>FT STRAND 181 183<br>FT HELIX 203 205<br>FT HELIX 203 205<br>FT HELIX 204 273<br>FT STRAND 181 183<br>FT HELIX 244 253<br>FT HELIX 296 299<br>FT HELIX 296 299<br>FT HELIX 396 390<br>FT HELIX 396 390<br>FT HELIX 396 299<br>FT HELIX 396 299<br>FT HELIX 1466 0 NF; SPDDD227D2DEEESD CRC64;<br>KMALALKEG SEGSVKFL AKAELFLKK WENPAONTAM LOGFERIKIL GTOSFGRVHL<br>VEHETOMY MELLORGV VELOPIELIK NEWPAONTAM LOGFERIKIL GTOSFGRVHL<br>VEHETOMY MELLORGV VELOPIELIK WENPAONTAM LOGFERIKIL GTOSFGRVHL<br>VEHETOMY ANGLORGV VELOPIELI HERFANDAW PFILVERFE FKNNSNLYMV<br>MEVVPOCFFF SHLRENGER EMALEVIAL UNIT FYLHS LDLITEDLEF FKNLIDQOOY<br>LOUTDFORK RVKGTHER INSOUNDED VELEELEVISI NECCOKEFSE F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | FT        | CONFLICT   | 206    | 206         | L -> S (in Ref. 4; AA sequence).                                                         |   |
| Sequence).           FT         HELIX         16         32           FT         HELIX         41         43           FT         HELIX         41         43           FT         STEAND         44         52           FT         STEAND         54         63           FT         STEAND         54         63           FT         TTOM         64         63           FT         TTOM         64         63           FT         TTOM         64         63           FT         TTOM         64         63           FT         TELIX         77         82           FT         HELIX         107         112           FT         STEAND         107         112           FT         HELIX         141         160           FT         HELIX         141         160           FT         STEAND         173         175           FT         STEAND         131         181           FT         HELIX         203         211           FT         HELIX         204         233           FT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | FT December 1997<br>FT HELIX 16 32<br>FT HELIX 41 43<br>FT HELIX 41 43<br>FT STRAND 54 63<br>FT STRAND 54 63<br>FT STRAND 54 63<br>FT STRAND 19 66<br>FT STRAND 19 76<br>FT STRAND 107 112<br>FT HELIX 166 96<br>FT STRAND 107 112<br>FT HELIX 129 136<br>FT STRAND 107 112<br>FT HELIX 129 136<br>FT STRAND 173 175<br>FT STRAND 181 183<br>FT HELIX 200 211<br>FT HELIX 200 211<br>FT HELIX 200 211<br>FT HELIX 200 211<br>FT HELIX 244 253<br>FT HELIX 290 293<br>FT HELIX 296 298<br>FT HELIX 296 298<br>FT HELIX 303 307<br>FT HELIX 346 348<br>S0 SCUENCE 351 A&: 40620 HW; 59DDD227D2DEEE5D CRC64;<br>KGNAALKKS SECSEVERL & KAREDFLEK WENPAQNTAH LD0FERIKTL GTOSFGNWEL<br>KGNAALKKS SECSEVERL & KAREDFLEK WENPAQNTAH LD0FERIKTL FTOSFGNWEL<br>KGNAALKKS SECSEVERL & KAREDFLEK WENPAQNTAH LD0FERIKTL FENALWYN<br>VENHETONNY WENFEN WENPFFF<br>AUDPTOJVER WENFFF HESOFKEL KAREDFLEK WENPAQNTAH LD0FERIKTL FENALWYN<br>VENHETONNY WENFFFF HESOFKEL KAREDFLEK WENPAQNTAH LD0FFF FINANNING<br>VENHETONNY WENFFF HESOFKEL WENPAQNTAH LD0FFF FINANNING<br>VENHETONNY WENFFF HESOFKEL WENPAQNTAH LD0FFF FINANNING<br>VENHETONNY WENFFF HESOFKEL WENFFF FINAN                                                                                                                                                                                                                                                              | FT        | CONFLICT   | 287    | 287         | N -> D (in Ref. 2; AA sequence and 3; AA                                                 |   |
| FT       HELIX       16       32         FT       HELIX       41       43         FT       STRAND       44       52         FT       STRAND       54       63         FT       STRAND       64       66         FT       STRAND       69       76         FT       TURN       64       66         FT       HELIX       77       82         FT       HELIX       77       82         FT       HELIX       100       112         FT       FELIX       141       160         FT       HELIX       170       172         FT       HELIX       170       172         FT       STRAND       173       175         FT       STRAND       173       175         FT       HELIX       203       205         FT       HELIX       203       205         FT       HELIX       204       233         FT       HELIX       204       234         FT       HELIX       206       233         FT       HELIX       206       235         FT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | FT HELIX 16 32<br>FT HELIX 41 43<br>FT STRAND 44 52<br>FT STRAND 54 63<br>FT TURN 64 66<br>FT HELIX 77 82<br>FT STRAND 107 112<br>FT HELIX 86 96<br>FT HELIX 177 82<br>FT STRAND 107 112<br>FT STRAND 107 112<br>FT STRAND 107 112<br>FT STRAND 107 112<br>FT STRAND 113 126<br>FT HELIX 208 205<br>FT HELIX 203 205<br>FT HELIX 303 307<br>FT HELIX 304 303<br>FT HELIX 304 4253<br>FT HELIX 304 456<br>FT HELIX 506 VN; SPDD227D2DEEE5D CRC64/<br>FT HELIX 304 306<br>FT HELIX 100 90<br>FT HEL                                                                                                                          | FΤ        |            |        |             | sequence).                                                                               |   |
| FT       HELIX       41       43         FT       STRAND       44       52         FT       STRAND       54       63         FT       STRAND       64       66         FT       STRAND       69       76         FT       STRAND       69       76         FT       STRAND       69       76         FT       STRAND       69       76         FT       STRAND       107       12         FT       STRAND       107       12         FT       STRAND       107       12         FT       STRAND       107       12         FT       STRAND       101       12         FT       STRAND       101       12         FT       STRAND       13       160         FT       HELIX       201       201         FT       STRAND       131       183         FT       STRAND       131       183         FT       HELIX       203       201         FT       HELIX       203       201         FT       HELIX       204       233         FT <td>FT HELIX 41 43<br/>FT STRAND 44 52<br/>FT STRAND 54 63<br/>FT STRAND 54 63<br/>FT STRAND 69 76<br/>FT STRAND 69 76<br/>FT STRAND 69 76<br/>FT STRAND 107 112<br/>FT HELIX 77 626<br/>FT HELIX 170 172<br/>FT HELIX 129 136<br/>FT HELIX 141 160<br/>FT HELIX 170 172<br/>FT HELIX 203 205<br/>FT HELIX 204 273<br/>FT STRAND 181 183<br/>ST SEQUENCE 351 AJ: 40620 HW; 59DDD227D2DEEE5D CRC64;<br/>NGNAALKKS S205WKFFL AKAEDFLKK WENPAQNTAH LD0FERIKTL GTOSFGKWHL<br/>NGNAALKKS S205WKFFL AKAEDFLKK WENPAQNTAH LD0FOK<br/>NGNAALKKS S205WKFFL AKAEDFLKK WENPAQNTAH LD0FFGKKKT<br/>TUDJUALYOFK WENPFFKK GFGDTSNFDD YEEEFINNS NKWOK DINNHKWFAT<br/>TUDJUALYOFK WEAFFFFKK GFGDTSNFDD YEEEFINSI NKKCKKFFSE F</td> <td>FΤ</td> <td>HELIX</td> <td>16</td> <td>32</td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                         | FT HELIX 41 43<br>FT STRAND 44 52<br>FT STRAND 54 63<br>FT STRAND 54 63<br>FT STRAND 69 76<br>FT STRAND 69 76<br>FT STRAND 69 76<br>FT STRAND 107 112<br>FT HELIX 77 626<br>FT HELIX 170 172<br>FT HELIX 129 136<br>FT HELIX 141 160<br>FT HELIX 170 172<br>FT HELIX 203 205<br>FT HELIX 204 273<br>FT STRAND 181 183<br>ST SEQUENCE 351 AJ: 40620 HW; 59DDD227D2DEEE5D CRC64;<br>NGNAALKKS S205WKFFL AKAEDFLKK WENPAQNTAH LD0FERIKTL GTOSFGKWHL<br>NGNAALKKS S205WKFFL AKAEDFLKK WENPAQNTAH LD0FOK<br>NGNAALKKS S205WKFFL AKAEDFLKK WENPAQNTAH LD0FFGKKKT<br>TUDJUALYOFK WENPFFKK GFGDTSNFDD YEEEFINNS NKWOK DINNHKWFAT<br>TUDJUALYOFK WEAFFFFKK GFGDTSNFDD YEEEFINSI NKKCKKFFSE F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | FΤ        | HELIX      | 16     | 32          |                                                                                          |   |
| FT       STRAND       44       52         FT       STRAND       54       63         FT       STRAND       64       66         FT       STRAND       69       76         FT       STRAND       69       76         FT       HELIX       77       62         FT       HELIX       86       96         FT       STRAND       107       112         FT       STRAND       173       175         FT       HELIX       203       205         FT       HELIX       203       205         FT       HELIX       204       233         FT       HELIX       204       234         FT       HELIX       205       307         FT       HELIX       206       307         FT       HELIX       206       307         FT       HELIX       206       307         FT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | FT STRAND 44 52<br>FT STRAND 54 63<br>FT TURN 64 66<br>FT HELIX 77 82<br>FT STRAND 107 112<br>FT STRAND 114 122<br>FT STRAND 114 122<br>FT STRAND 114 122<br>FT HELIX 129 136<br>FT HELIX 203 205<br>FT HELIX 204 273<br>FT HELIX 204 273<br>FT HELIX 304 307<br>FT HELIX 304 307<br>FT HELIX 199 293<br>SUBJORCE 31 AJ, 40650 NW; SUDD27D2DEEE5D CRC64:<br>MEWAGAKENE S1 AJ, 40650 NW; SUDD27D2FEEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | FΤ        | HELIX      | 41     | 43          |                                                                                          |   |
| FT       STRAND       54       63         FT       STRAND       69       66         FT       STRAND       69       76         FT       HELIX       77       62         FT       HELIX       86       96         FT       STRAND       107       112         FT       STRAND       114       122         FT       HELIX       123       166         FT       HELIX       141       160         FT       HELIX       170       172         FT       STRAND       131       160         FT       HELIX       203       205         FT       HELIX       203       205         FT       HELIX       203       205         FT       HELIX       204       231         FT       HELIX       204       233         FT       HELIX       296       283         FT       HELIX       346       346         Stoutower       314, 40620       MU       SpotD227D2DEEESD CRC64;         MGRAAAKKG SEQESVKEFL AKAKEDFLKK WENAPOHAL HULEY FLMS LDLIVPER FINDUNUK       FORMENAWER         MUNAAKKG SEQESVKEFL AKAKEDFLKK WE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | FT STRAND 54 63<br>FT STRAND 69 76<br>FT STRAND 69 76<br>FT STRAND 69 76<br>FT STRAND 69 76<br>FT STRAND 107 12<br>FT HELIX 77 82<br>FT STRAND 117 112<br>FT STRAND 117 112<br>FT STRAND 117 112<br>FT STRAND 113 123<br>FT STRAND 131 183<br>FT HELIX 208 211<br>FT HELIX 208 211<br>FT HELIX 208 211<br>FT HELIX 208 211<br>FT HELIX 244 253<br>FT HELIX 244 253<br>FT HELIX 244 253<br>FT HELIX 296 293<br>FT HELIX 296 293<br>FT HELIX 296 293<br>FT HELIX 303 307<br>FT HELIX 346 348<br>S0 SEQUENCE 351 AJ: 40620 HW; 59DDD227D2DEEESD CRC64;<br>MGNAAAKKS SEQUENCEL ASALEPJLKK WEMPAONTAM LD0FERIKTL GTOSFGKWML<br>WETVF0GENF SURANGE INMERCENT MERKHLOWN FFLUKTES FKNNNLYW<br>VKHETONHY AKKLOKOK VULKQIENTL MERKHLOWN FFLUKTES FKNNNLYW<br>VKHETONHY AKKLOKOV VELKQIENTL MERKHLOWN FFLUKTES FKNNNLYW<br>VKHETONHY AKKLOKOV VELKARET LANGEN FFLUKTES FKNNNLYW<br>VKHETONHY AKKLOKOV VELKARET FLUKTES FKNNNLYW<br>VKHETONHY AKKLOKOV VELKARET FLUKTES FKNNNLYW<br>VKHETONHY AKKO SUM FFLUKTES FKNNNLYW<br>VKHETONHY AKKO SUM FFLUKTES FKNNNLYW<br>VKHETONHY AKKO FUKTES FKNNNLYW<br>VKHETONHY AKKO FUKTES FKNNNLYW<br>VKHETONHY AKKO FUKTES FKNNNLYW<br>FKNNNCHTON FKNNNLYW<br>FKNNNCHTON FKNNNLYW<br>FKNNCHTON FK                                                                                                                                                                                                                                          | FT        | STRAND     | 44     | 52          |                                                                                          |   |
| FT       TURN       64       66         FT       STEAND       69       76         FT       HELIX       77       62         FT       STEAND       107       112         FT       STEAND       107       112         FT       STEAND       107       112         FT       STEAND       114       122         FT       STEAND       114       122         FT       HELIX       129       136         FT       HELIX       101       170         FT       STEAND       131       183         FT       STEAND       131       183         FT       HELIX       203       205         FT       HELIX       203       205         FT       HELIX       204       233         FT       HELIX       290       290         FT       HELIX       290       290         FT       HELIX       290       290         STEOURCH       313.41       40520 MV       SPDD227D2DEEESD CRC64/         MCMAAAKG SEQESVKFL AKAEDPLKK WENNDAND FUNCHTAND       FUNCHTAND FUNCHTAND         MCMAAAKG SEQESVKFL AKAEDPLKK WEND FUNCHTAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | FT TUEN 64 66<br>FT HELIX 77 82<br>FT HELIX 77 82<br>FT HELIX 86 94<br>FT STRAND 107 112<br>FT HELIX 106 94<br>FT STRAND 107 112<br>FT HELIX 129 136<br>FT STRAND 114 122<br>FT HELIX 129 136<br>FT STRAND 173 175<br>FT HELIX 141 160<br>FT HELIX 170 172<br>FT STRAND 133 105<br>FT HELIX 208 211<br>FT HELIX 244 253<br>FT HELIX 244 253<br>FT HELIX 244 253<br>FT HELIX 290 293<br>FT HELIX 290 293<br>FT HELIX 303 307<br>FT HELIX 346 3482<br>FT HELIX 346 3482<br>FT HELIX 199 294<br>FT HELIX 199 295<br>FT HELIX 199 2                                                                                                                                  | FT        | STRAND     | 54     | 63          |                                                                                          |   |
| T       STEAND       69       76         T       HELIX       77       82         FT       HELIX       86       96         FT       STEAND       107       112         FT       STEAND       114       122         FT       HELIX       141       124         FT       STEAND       114       122         FT       HELIX       141       160         FT       HELIX       170       172         FT       STEAND       173       175         FT       STEAND       181       183         FT       HELIX       208       205         FT       HELIX       208       211         FT       HELIX       244       253         FT       HELIX       264       273         FT       HELIX       264       263         FT       HELIX       296       283         FT       HELIX       346       348         SEQUENCY       SAUGNOV       VKINETONOV       FFWINENUM         MGNAAAKKO SEQESVKEFL AKAKEDFLKK WENNANTAH LOPERISTL GTOSFGRVHL       MGNAAAKKO SEQESVKEFL AKAKEDFLKK WENNOV FYNKUV FYNKUV FNANTAH LOPUNGV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | FT STEAND 69 76<br>FT HELIX 77 82<br>FT HELIX 86 96<br>FT HELIX 86 96<br>FT HELIX 120 112<br>FT STEAND 107 112<br>FT STEAND 114 122<br>FT STEAND 114 122<br>FT HELIX 129 136<br>FT HELIX 141 160<br>FT HELIX 170 172<br>FT STEAND 181 183<br>FT HELIX 203 205<br>FT HELIX 203 205<br>FT HELIX 203 205<br>FT HELIX 244 253<br>FT HELIX 244 253<br>FT HELIX 244 253<br>FT HELIX 396 299<br>FT HELIX 40620 NH; S9DDD227D2DEEE5D CPC64;<br>NGRAAAKKG SECESVKEFL AKAEDFLEK WENPAONTAH LOOFERIKTL GTOSFGRVHL<br>NGRAAAKKG SECESVKEFL AKAEDFLEK WENPAONTAH LOOFERIKTU FUNACOPPFF<br>ADOFIQITER FUNACTURE CEMANENAD VULACUUT FENACOPPFF<br>ADOFIQITER FUNACTURE CEMANENAD VULACUUT FENACOPPFF<br>ADOFIQITER VEAFFF HISSONKOLL NNED<br>VENETERDER VEAFFF HISSONKOLL NNED<br>VENETERDER VEAFFF HISSONKOLL NNED<br>VENETERDER VEAFFF HISSONKOLL NNED<br>NECKKEFFF F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | FT        | TURN       | 64     | 66          |                                                                                          |   |
| FT         HELIX         77         62           FT         HELIX         86         96           FT         STEAND         107         112           FT         STEAND         117         112           FT         STEAND         114         122           FT         STEAND         114         122           FT         STEAND         114         122           FT         HELIX         129         136           FT         HELIX         141         160           FT         HELIX         170         172           TSTEAND         181         183         183           FT         HELIX         200         211           FT         HELIX         201         234           FT         HELIX         203         211           FT         HELIX         204         233           FT         HELIX         203         307           FT         HELIX         303         307           GC         MUNALAKKG         SADGSVKFL & KAKEDFLKK WEN PONTAH LOPERISTL GTOSFGRVML           MUNALAKG         SADGSVKFL & KAKEDFLKK WENN FFUNGLIKTST         TOSFGRVML <tr< td=""><td>PT HELIX 377 82<br/>PT HELIX 86 96<br/>PT STRAND 107 112<br/>PT STRAND 107 112<br/>PT HELIX 129 136<br/>PT HELIX 129 136<br/>PT HELIX 141 160<br/>PT HELIX 170 172<br/>PT HELIX 203 201<br/>PT HELIX 203 201<br/>PT HELIX 203 201<br/>PT HELIX 244 253<br/>PT HELIX 264 273<br/>PT HELIX 296 298<br/>PT HELIX 296 298<br/>PT HELIX 296 298<br/>PT HELIX 303 307<br/>PT HELIX 346 348<br/>S0 SCUENCE 351 A&amp;: 40600 NW; 59DDD227D2DEEESD CRC64;<br/>NCGNALAKKS SQCSVAFLS AKAEDFLKK WEMPAQNTAH LD0FERIKTL GTOSFGRVHL<br/>NCGNALAKKS SQCSVAFLS AKAEDFLKK WEMPAQNTAH LD0FERIKTL GTOSFGRVHL<br/>NCGNALAKKS SQCSVAFFS HISDDAKAEL NHAD VULACIAL VEMAQNY PFF<br/>AD0F10[YEK FUNGTIONED IN SUBJECT OF SU</td><td>FT</td><td>STRAND</td><td>69</td><td>76</td><td></td><td></td></tr<> | PT HELIX 377 82<br>PT HELIX 86 96<br>PT STRAND 107 112<br>PT STRAND 107 112<br>PT HELIX 129 136<br>PT HELIX 129 136<br>PT HELIX 141 160<br>PT HELIX 170 172<br>PT HELIX 203 201<br>PT HELIX 203 201<br>PT HELIX 203 201<br>PT HELIX 244 253<br>PT HELIX 264 273<br>PT HELIX 296 298<br>PT HELIX 296 298<br>PT HELIX 296 298<br>PT HELIX 303 307<br>PT HELIX 346 348<br>S0 SCUENCE 351 A&: 40600 NW; 59DDD227D2DEEESD CRC64;<br>NCGNALAKKS SQCSVAFLS AKAEDFLKK WEMPAQNTAH LD0FERIKTL GTOSFGRVHL<br>NCGNALAKKS SQCSVAFLS AKAEDFLKK WEMPAQNTAH LD0FERIKTL GTOSFGRVHL<br>NCGNALAKKS SQCSVAFFS HISDDAKAEL NHAD VULACIAL VEMAQNY PFF<br>AD0F10[YEK FUNGTIONED IN SUBJECT OF SU                                                                                                                                                                                                                                                                                                                        | FT        | STRAND     | 69     | 76          |                                                                                          |   |
| PT         B4         96           PT         STEAND         107         112           PT         STEAND         114         122           PT         HELIX         129         136           PT         HELIX         141         160           PT         HELIX         141         160           PT         HELIX         170         172           PT         HELIX         170         173           PT         STRAND         173         175           PT         STRAND         173         175           PT         HELIX         203         205           PT         HELIX         208         211           PT         HELIX         204         234           PT         HELIX         203         307           PT         HELIX         346         348           SEQUENCHY         HELIX         40620 MY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PT STEAMD 107 112<br>PT STEAMD 107 112<br>PT STEAMD 114 122<br>PT STEAMD 114 122<br>PT STEAMD 114 122<br>PT STEAMD 114 122<br>PT STEAMD 114 126<br>PT HELIX 129 136<br>PT HELIX 170 172<br>PT STEAMD 173 175<br>PT STEAMD 173 175<br>PT HELIX 203 205<br>PT HELIX 203 205<br>PT HELIX 204 273<br>PT HELIX 244 253<br>PT HELIX 244 253<br>PT HELIX 290 293<br>PT HELIX 290 293<br>PT HELIX 296 289<br>PT HELIX 396 397<br>PT HELIX 996 293<br>PT HELIX 996 299<br>PT HELIX 996 197<br>PT HELIX 140000 VELOPTELK WENPAONTAM LOOPTELKIL GTOSFGRVML<br>WENFCHER STEALS. 40620 NW; S9DDD227D2DEFESD CPC64;<br>NERALALKEG SEQSSVEFL AKAEUPIEKK WENPAONTAM LOOPTELKIL GTOSFGRVML<br>WENFCHER STEALS. 40620 NW; S9DDD227D2DEFESP FKNNSNLYW<br>NEWVPGOEMF SHLRRLORS EMADEVELA NULLY FYLHS LDLITFOLKP ENLIDQOOF<br>LOUTDFORK RVKGTURE USSGEWEFL ANDUVDUKLY VELAPOPFF<br>ADOPIQIYEK IVSGEWEFS IN SOUCHESD IN RECOKEFSE F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | FT        | HELIX      | 77     | 82          |                                                                                          |   |
| FT         STEARD         107         112           FT         STEARD         107         112           FT         STEARD         114         122           FT         STEARD         114         122           FT         STEARD         114         122           FT         HELIX         129         136           FT         HELIX         141         160           FT         STEARD         173         175           FT         STEARD         181         183           FT         HELIX         203         201           FT         HELIX         203         201           FT         HELIX         204         233           FT         HELIX         290         233           FT         HELIX         290         233           FT         HELIX         303         307           FT         HELIX         304         307           SO         SUBJUE         344         34620           SO         SUBJUE         344         34620           SO         SUBJUE         344         34620           SUBJUE         SUBJUE<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | FT STEAMD 107 112<br>FT STEAMD 107 112<br>FT STEAMD 114 122<br>FT STEAMD 114 122<br>FT HELIX 129 136<br>FT HELIX 141 160<br>FT HELIX 170 172<br>FT STEAMD 181 183<br>FT STEAMD 181 183<br>FT HELIX 208 211<br>FT HELIX 208 211<br>FT HELIX 208 211<br>FT HELIX 244 273<br>FT HELIX 244 273<br>FT TELIX 244 273<br>FT HELIX 296 295<br>FT HELIX 296 295<br>FT HELIX 296 295<br>FT HELIX 303 307<br>FT HELIX 346 348<br>S0 SCUUNCE 351 A&: 40620 HW; 59DDD227D2DEEESD CRC64;<br>NGNAAAKKS S2GSYNEFL & AAREDFLEK WENPAQNTAH LD0FERIKTL GTOSFGRWHL<br>VKHETONHY AKKLDKOKV VKLQIETL MEKRILQAW FFPLVKLES FKNNNLYKV<br>VKHETONHY AKKLDKOKV VKLQIETL MEKRILQAW FFFLVKLES FKNNNLYKV<br>VKHETONHY AKKLDKOKV VKLQIETL MEKRILQAW FFFL HALLYKV<br>VKHETONHY AKKLDKOKV VKLQIETL MEKRILQAW FFFL HALLYKV<br>VKHETONHY AKKLDKOKV VKLQIETL MEKRILQAW FFFL HALLYKV<br>VKHETONHYKV VLAYFYFFL HALLYKV<br>VKHETONHYKV VKLYFYFYFK FFFL HALLYKV<br>VKHETONHYKV<br>VKHETONHYKV<br>VKHETONHYKV<br>VKHETONHYKV<br>VKHETONHYKV<br>VKHETONHYKV<br>VKHETONHYKV<br>VKHETONHYKV<br>VKHETONHYKV<br>VKHETONHYKV<br>VK                                                                                                                                                                                                                                                  | FT        | HELTY      | 86     | 96          |                                                                                          |   |
| YT         STRAND         114         112           YT         STRAND         114         112           YT         HELIX         121         166           YT         HELIX         141         160           YT         HELIX         170         172           YT         STRAND         173         175           YT         STRAND         173         172           YT         HELIX         205         211           YT         HELIX         244         253           YT         HELIX         250         233           YT         HELIX         246         348           StOURCHY         SAGURANY PERJURATION FOR THE HOURD HAND THANGUNAN HUNDAND H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11 575 575 575 575 575 575 575 575 575 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | FT        | STRAND     | 107    | 112         |                                                                                          |   |
| <ul> <li>ISTAND</li> <li>ISTAND</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11 DECOND 1:30 1:30<br>11 DECOND 1:30 1:30<br>17 HELLX 1:41 1:60<br>17 HELLX 1:70 1:72<br>17 STRAND 1:73 1:75<br>17 STRAND 1:73 1:75<br>17 HELLX 2:03 2:05<br>17 HELLX 2:08 2:11<br>18 DECOND 1:74 HELLX 2:08 2:14<br>17 HELLX 2:08 2:14<br>17 HELLX 2:08 2:14<br>17 HELLX 2:09 2:33<br>17 HELLX 2:90 2:33<br>17 HELLX 3:346 3:48<br>10 SEQUENCE 3:51 AJ: 40:620 HW; 59DDD227D2DEEE5D CRC64;<br>10 NGAAAKKO SEQUENCEL ANAREDFLKK WEMPAQNTAH LDQFERIKTL GTOSFGKWHL<br>WKNHETONNY AKKLOKGKV VKLKQIEHTL MEKRILQAW FFPLVKLEYS FKNNNLYW<br>WKTVFGGFF SELRADGEK IDMAGENEL GALGYLLY EMAAOFPPFF<br>ADOITDFGFAR ROWGO WTLG GTFERLARET LLSKPWKAY DEALGGLLY EMAAOFPFFF<br>ADOITDFGFAR ROWGO WTLG GTFERLARET LLSKPWKAY DEALGGLLY EMAAOFPFFF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ET.       | STRAND     | 114    | 122         |                                                                                          |   |
| 1 HELLA 147 140<br>11 HELA 147 140<br>11 HELLA 147 140<br>11 HELLA 147 140<br>11 HELLA 147 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1. HELLA 1497 1400<br>1. HELLA 1497 1400<br>1. HELLA 1497 1400<br>1. HELLA 1407 170<br>1. HELLA 203 105<br>1. HELLA 203 105<br>1. HELLA 203 105<br>1. HELLA 203 105<br>1. HELLA 203 107<br>1. HELLA 204 127<br>1. HELLA 204 127<br>1. HELLA 206 129<br>1. HELA 206 129<br>1.                                                                                                                        | r I<br>FT | UPLITY     | 120    | 126         |                                                                                          |   |
| 11 BELIA 171 100<br>172 BELIA 171 172<br>175 BELIA 170 172<br>175 STRAND 173 175<br>175 STRAND 173 175<br>175 STRAND 181 125<br>175 STRAND 181 125<br>175 STRAND 181 125<br>175 STRAND 181 125<br>175 STRAND 172<br>175 STRAND 172<br>175 STRAND 175<br>175 STRAND 175                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1: BELIA 191 192<br>1: BELIA 194 193<br>1: BELIA 194 195<br>1: BELIA 19                                                                                                                                  |           | UPLIX      | 129    | 160         |                                                                                          |   |
| 1         BLLA         1/0         1/2           1         BLLA         1/0         1/2           1         STEAMS         1/3         1/2           1         STEAMS         1/3         1/3           1         BLLA         1/3         1/2           1         STEAMS         1/3         1/2           1         BLLA         203         205           1         HELIX         208         211           1         HELIX         219         234           1         HELIX         244         253           1         HELIX         244         253           1         HELIX         290         293           1         HELIX         290         293           1         HELIX         290         293           1         HELIX         303         307           1         HELIX         303         307           1         BLIX         303         307           1         BLIX         303         307           1         BLIX         303         307           1         BLIX         303         307                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11 BELIA 1/0 1/2<br>17 STRAMD 173 175<br>17 STRAMD 173 175<br>17 STRAMD 131 105<br>17 STRAMD 131 105<br>17 STRAMD 131 105<br>10 STRAMS SQUENCE 351 AJ: 40 SQUENCE 350 SQUENCE 351 AJ: 40 SQUENCE 350 SQ                                                                                                                                                                                                                                                                                                                                            |           | NEL IX     | 141    | 100         |                                                                                          |   |
| 1         STRAND         1/3         1/3           1         BLIX         203         205           1         BLIX         200         205           1         BLIX         200         201           1         BLIX         201         201           1         BLIX         201         201           1         BLIX         203         201           1         BLIX         204         203           1         TUEN         286         283           1         HELIX         206         293           1         HELIX         303         307           1         HELIX         346         348           3         SQUENCY         SSLOESOKER SELSEN COLON MY         SSDUENCY           1         WTHEREN AND FULKERER FINNENARY         HUTTE CONTRAL FULK         HUTENDER FINNENARY           1         WENDERSON VERENDERSON VERENDERSON         FINNENARY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | FI ADP 143 TAND 143 143<br>TSTAND 181 183<br>TT HELIX 203 205<br>TT HELIX 203 205<br>TT HELIX 203 205<br>TT HELIX 208 211<br>TT HELIX 214 233<br>TT HELIX 244 233<br>TT HELIX 296 293<br>TT HELIX 296 293<br>TT HELIX 396 307<br>TT HELIX 396 307<br>TT HELIX 396 307<br>TT HELIX 396 307<br>TT HELIX 303 307<br>TT HELIX 196 298<br>TT HELIX 196 29 | r I<br>FT | OTDAND     | 170    | 172         |                                                                                          |   |
| 1         SirAnu         101         103           1         SirAnu         101         103           1         BLIX         203         214           1         SirAnu         203         214           1         BLIX         203         214           1         BLIX         204         214           1         HELIX         244         253           1         HELIX         264         273           1         HELIX         290         293           1         HELIX         303         307           1         HELIX         344         34500 MF           20         SSIALALAKG         350SSVKFL         KAKEDFLKK           30         307         HELIX         344           30         307         HELIX         34500 MF           20         SSIALALAKG         350SSVKFL         KAKEDFLKK         HENONTH           30         SOSIALAKG         350SSVKFL         KAKEDFLKK         HENONTH           20         SSIALALAKG         350SSVKFL         KAKEDFLKK         HENONTH           30         SOSIALAKGO         350SSVKFL         KAKEDFLKK         HENONTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 SIFANU 101 103<br>1 SIFANU 101 103<br>1 KELIX 203 211<br>1 KELIX 203 211<br>1 KELIX 203 211<br>1 KELIX 204 253<br>1 THELIX 244 253<br>1 THELIX 244 253<br>1 THELIX 244 253<br>1 THELIX 296 298<br>1 HELIX 296 298<br>1 HELIX 303 307<br>1 HELIX 304 348<br>30 SEQUENCE 351 A&: 40620 HW; 59DDD227D2DEEE5D CRC64;<br>1 KGNAAAKKS SEGEWKFL AKAEDFLKK WENPAQNTAH LD0FERIKTL GTOSFGRVHL<br>1 KGNAAAKKS SEGEWKFL AKAEDFLKK WENPAQNTAH LD0FERIKTL TOFOFFF<br>1 GOTFFGFK SUNGTTUC GTPERIAND VIALOUT VIALOUTES FKNMANTAW<br>1 GOTFFGFK SUNGTTUC GTPERIAND VIALOUTEN FKGNLXNOWN DINNHKWFAT<br>1 DUHAIYORK VEAFFFFK GFGDTSNFDD YEEEEIRVSI NEKCGKEFSE F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.1       | STRAND     | 173    | 175         |                                                                                          |   |
| FT HELIX 203 205<br>FT HELIX 208 211<br>FT HELIX 208 211<br>FT HELIX 219 234<br>FT HELIX 244 253<br>FT HELIX 244 253<br>FT HELIX 246 278<br>FT HELIX 296 288<br>FT HELIX 303 307<br>FT HELIX 306 348<br>S SQUENCE 351 A4: 40520 HW: S9DDD227D2DEEESD CRC64:<br>MCNAAAKKG SDCSVKEFL AKAKEDFLKK WENPANTAH LOVERIKTI GTOSFGRVHL<br>MCNAAAKKG SDCSVKEFL AKAKEDFLKK WENPANTAH DIVINKE FINLIDQOGY<br>IQVTDFGAK RVKGTUTIC GTPETLAPINATUUG TILIKKYTAK DWUALOUTI FINLAGYPFF<br>AUGPIGITEK VSGKWEFTS HISSOKUML KNUMLYNDIK FFGULNGVA DINNKKFFAT<br>TUTIAITUGK VEAPFIPHER GOCTISTED YEEEGINGS NEKCGEFS F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TT HELIX 203 205<br>TT HELIX 203 205<br>TT HELIX 208 211<br>TT HELIX 219 234<br>TT HELIX 244 253<br>TT HELIX 264 273<br>TT TURN 286 263<br>TT HELIX 303 307<br>TT HELIX 303 307<br>TT HELIX 346 348<br>OS SEQUENCE 351 A4. 40620 NW; S9DDD227D2DEEE5D CPC64;<br>NGRAAAKKG SEQESVKEFL AKAREDFLEK WENPAONTAM LDQFERIKTL GTOSFGRVML<br>NUMERATED SUCESVKEFL AKAREDFLE NNEL<br>NUMERATED SUCESVKEFL SUCESVKEFL AKAREDFLE NNEL<br>NUMERATED SUCESVKEFL AKAREDFLE NNEL<br>NUMERATED SUCESVKEFL AKAREDFLE NNEL<br>NUMERATED SUCESVKEFL SUCESVKEFL SUCESVKEFL<br>NUMERATED SUCESVKEFL SUCESVKEFL SUCESVKEFL<br>NUMERATED SUCESVKEFL SUCESVKEFL SUCESVKEFL<br>NUMERATED SUCESVKEFL SUCESVKEFL SUCESVKEFL<br>NUMERATED SUCESVKEFL SUCESVKEFL<br>NUMERATED SUCESVKEFL SUCESVKEFL<br>NUMERATED SUCESVKEFL SUCESVKEFL<br>NUMERATED SUCE                                                                                                                                                                                                                       | r T       | STRAND     | 181    | 183         |                                                                                          |   |
| FI HELIX 205 211<br>FI HELIX 219 234<br>FT HELIX 244 253<br>FT HELIX 264 273<br>FT TURN 266 269<br>FT HELIX 290 293<br>FT HELIX 290 293<br>FT HELIX 303 307<br>FT HELIX 303 307<br>FT HELIX 346 348<br>S SEQUENCE 351 A4: 40520 HW; S9DDD227D2DEEESD CRC64;<br>NGNAAAAKG SEQESVKEFL AKAKEDFLKK WENPAQNTAH LOVERIKTI GTGSFGRVHL<br>VKHHETGNEV VKKNEFTL NEKRICAAN PFU/KLEFF FKNNSNLYHV<br>NEVPFOGENF SHLBALGKE DEMARKALO ULL FTLBS LDLIYPDLKF FNLSDQOF<br>IQUTDFGAK RVKGTURIC GTFEYLDAMERKALO ULL FTLBS LDLIYPDLKF FNLSDQOF<br>ADOPIQITYEK IVSGKWHTS HISSOLKANDL KHAW_VDWIALGULY HAAGYPFFF<br>ADOPIQITYEK IVSGKWHTS HISSOLKANDL KHAW_VDWIALGULY HAAGYPFFF<br>ADOPIQITYEK IVSGKWHTS HISSOLKANDL KHAW_VDWIALGULY HAAGYPFFF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ri HeLiX 200 211<br>FI HELIX 219 234<br>FI HELIX 219 234<br>FI HELIX 244 253<br>FI HELIX 244 253<br>FI HELIX 296 253<br>FI HELIX 296 253<br>FI HELIX 303 307<br>FI HELIX 303 307<br>FI HELIX 346 348<br>S0 SEQUENCE 351 A&: 40620 HW; 59DDD227D2DEEESD CRC64;<br>HOGNAAAKKO SPCSTVERFL ARAMEDFLKK WENPAONTAM LDOFERIKTL GTOSFGKVML<br>VKNHETONHY AKKIDSCOV VELKQIEHTL NEKRILQVM FPFLVKLES FKNNNLYW<br>HETVPGCHF SILKAJCKE ENABEDFLKK WENPAONTAM LDOFERIKTL GTOSFGKVML<br>VKNHETONHY AKKIDSCOV VELKQIEHTL NEKRILQVM FPFLVKLES FKNNNLYW<br>HETVPGCHF SILKAJCKE ENABEDFLKK WENPAONTAM LDOFERIKTL GTOSFGKVML<br>VKNHETONHY AKKIDSCOV VELKQIEHTL NEKRILQVM FPFLVKLES FKNNNLYW<br>HETVPGCHF SILKAJCK CONSTRUCTION FFALARET LISKOVAK FFALAGULAVI FEAAGYPPFF<br>ACTION FFALARET FILSKOV VELKGIEHTL NEKRILQVM FPFLVKLES FKNNNLYW<br>HETVPGCHF SILKAJCK CONSTRUCTION FFALARET LISKOVAK FFALAGULAVI FEAAGYPPFF<br>ACTION FFALARET FILSKOVAK VELKGIEHTL NEKRIKVAX<br>TDVILAIYQEK VEAPFIPKFK GFGDTSNFDD YEEELIEVSI NEKCGKEFSE F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | t T       | HELIX      | 203    | 205         |                                                                                          |   |
| FT HELIX 219 234<br>FT HELIX 244 253<br>FT HELIX 244 253<br>FT HELIX 244 253<br>FT HELIX 264 273<br>FT HELIX 250 253<br>FT HELIX 303 207<br>FT HELIX 303 207<br>FT HELIX 346 348<br>O SEQUENCE 351 A4: 40620 NV: S9DDD227D2DEEESD CRC64:<br>NGNAAAKKG SEQUENCKFL KAKEDFLKK WENPAONTAH LOPERIKTL GTOSFGRVHL<br>NGNAAAKKG SEQUENCKFL KAKEDFLKK WENPAONTAH LOPERIKTL GTOSFGRVHL<br>NGNAAKKG SEQUENCKFL KAKEDFLKK WENPAONTAH LOPERIKTL GTOSFGRVHL<br>NGNAAKKG SEQUENCKFL KAKEDFLKK WENPAONTAH DINGKFL<br>NGNAAKKG SEQUENCKFL KAKEDFLKK WENPAONTAH LOPERIKTL GTOSFGRVHL<br>NGNAAKKG SEQUENCKFL KAKEDFLKK WENPAONTAH LOPERIKTL GTOSFGRVHL<br>NGNAAKG SEQUENCKFL KAKEDFLKK WENPAONTAH LOPERIKTL GTOSFGRVHL<br>NGNAAKKG SEQUENCKFL KAKEDFLKK WENPAONTAH LOPERIKTL GTOSFGRVHL<br>NGNAAKKG SEQUENCKFL KAKEDFLKK WENPAONTAH LOPERIKTL GTOSFGRVHL<br>NGNAAKKG SEQUENCKFL KAKEDFLKK WENPAONTAH FUNKLESKER<br>AUDPLOTYFK VYSGNAATS HISSOLKALL KANULYNDIK SEGGREFSE F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | FT HELIX 219 234<br>FT HELIX 244 253<br>FT HELIX 264 273<br>FT HULX 264 273<br>FT HULX 290 293<br>FT HULX 290 293<br>FT HULX 296 289<br>FT HULX 396 300<br>SO REQUENCE 351 AA. 40620 NW; S9DDD227DIDEEE5D CRC64;<br>KENALAKKO SECSVEFL AKAEDFLEK WENPAONTAM LDQFERITL GTOSFGRVML<br>VUENETONHY ANKLDROW VULKUETH. NERFUNANTAM FULVELEES FKNISNLYNV<br>NEWFVFGGEN SHLRBIGES ENALEVALO ULL FFYLHS LDLIYRDLKP ENLLDQGOY<br>IQVTDFGAR RVKGTURLG CFTPLIARFNIL HNED<br>VDLIYFPL IVSG <del>AVEFES HI SJOLKDEL NHED</del><br>ADOPIGIYEK IVSG <del>AVEFES HI SJOLKDEL NHED</del><br>VELEFTURG FFS HI SJOLKDEL HNED<br>VELEFTURG FFS HI SJOLKDEL NHED<br>VELEFTURG FFS HING FFS HI SJOLKDEL NHED<br>VELEFTURG FFS HING FFS HING FFS HING FFS HING FFS FKNING<br>ADOPIGIYEK VELEFTURG FFS FFS FF<br>FFS HING FFS HING FFS HING FFS HING FFS FKNING FFS FKNING FFS FKNING FFS FFS FFS FFS FFS FFS FFS FFS FFS FF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | rΤ        | HELIX      | 208    | 211         |                                                                                          |   |
| FT       HELIX       244       253         FT       HELIX       264       273         FT       HELIX       264       273         FT       HELIX       290       283         FT       HELIX       296       298         FT       HELIX       303       307         FT       HELIX       346       348         Stoutence       351       A4:       40620 NW;         Stoutence       351       A4:       40620 NW;         VKINETCREV       Stoutence       Stoutence       Stoutence         INFUNCTIONAR WKKSDERDERS       Stoutence       Stoutence       Stoutence         INFUNCTIONAR WKKSDERDERS       Stoutence       Stoutence       Stoutence         INFUNCTOR       WARTENDERS       Stoutence       Stoutence         INFUNCTOR       WARTENDERS       Stoutence       Stoutence         INFUNCTOR       VEXENTERS       INSCOMENTS       INSCOMENTS         INFUNCTOR       VEXENTES       INFUNCTOR       INFUNCTOR         ANDOPIOTYEK       VSORTHER GODTSTOND VEXENTERSON INECOCRESE F       INFUNCTOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | FT HELIX 244 253<br>FT HELIX 244 253<br>FT HELIX 246 273<br>FT TURN 286 289<br>FT HELIX 290 293<br>FT HELIX 303 307<br>FT HELIX 303 307<br>FT HELIX 304 346<br>S0 SEQUENCE 351 A&: 40620 HW; 59DDD227D2DEEE5D CRC64;<br>NGNAAAAKKO SEQESVKEFL AKAKEDFLKK WENPAONTAM LDQFERIKTL GTOSFGRVML<br>VKHRETONNY AMKLDROKY VEKADETH LEKKTLAVAN DWALGUTIY ETHACF9FF<br>NGNAAAKKO SEQESVKEFL AKAKEDFLKK WENPAONTAM LDQFERIKTL GTOSFGRVML<br>VKHRETONY AMKLDROKY VEKADETH LEKKTLAVAN DWALGUTIY ETHACF9FF<br>ADQFIQIYEK IVSGKWAFFS HISSDEKEL NNEL<br>VECKEFSE F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | rТ        | HELIX      | 219    | 234         |                                                                                          |   |
| FT         HELIX         264         273           FT         TUEN         266         269           FT         HELIX         290         293           FT         HELIX         290         293           FT         HELIX         303         302           SEQUENCE         313         43         4020           MSNAAAKG         SEQUENCE         314         40420           WHIETCHNY         MKILDEGOKY         VKINETCHNY         MKILDEGOKY           VKINETCHNY         MKILDEGOKY         VKINETCHNY         MKILDEGOKY           JQUTDFGAK KVKG         VKINETCHNY         MKILDEGOKY         VKINETCHNY           JQUTDFGAK KVKGATUTIC         CTEVILLEK         VKINETCHNY         VKINETCHNY           JQUTDFGAK KVKGATUTIC         TISZNIKAVA         VKINETCHNY         VKINETCHNY           JQUTDFFKK         VSGAVKFFS         HISSNIKAVA         VWINKUFAT           TUTAINUGK         VKINETCHNY         VKINETCHNY         VKINETCHNY           JQUTDFFK         VSGAVKFFS         HISSNIKAVA         VWINKUFAT           TUTAINUGK         VKINETCHNY         VKINETCHNY         VKINETCHNY           JQUTDFFK         VSGAVKFFS         HISSNIKAVA         VKINKUFA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | FT HELIX 264 273<br>FT TURN 286 289<br>FT HELIX 290 283<br>FT HELIX 290 283<br>FT HELIX 303 307<br>FT HELIX 304 307<br>SUBJECT BELIX 34620 NW; SUBDR27D2DEEED CRC64;<br>SUBJECT HELIX 34620 NW; SUBDR27D2DEEED CRC64;<br>SUBJECT HELIX 34620 NW; SUBDR27D2DEEEED CRC64;<br>SUBJECT HELIX 34620 NW; SUBJECT HERACONAL EDUFFERITI GTOSFGRVML<br>WENNETONY ANKIDENCY VELADETH INFRINAVA UPWIAGULTY ETHACTOPFF<br>AUGPTOINTS HISDERSE HEMARYANG HIL FFVHS LDLITEDLEF ENLIDQOOY<br>HEVPFOCHT SHIEPLORE EMARYANG HIL FFVHS LDLITEDLEF ENLIDQOOY<br>HOUTOFAR RVKGTHIC GTPEYLARD HILFT LISSTMAND UPWIAGULTY ETHACTOPFF<br>AUGPTOINTER INSOLWEFS HISDERDELE NHEL<br>VENETOR VELAPFIPKFK GPGDTSNFDD YEEEEIRVSI NEKCGKEFSE F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FT        | HELIX      | 244    | 253         |                                                                                          |   |
| <pre>FT TURN 286 289 FT HELIX 296 293 FT HELIX 296 293 FT HELIX 296 293 FT HELIX 303 307 FT HELIX 3103 307 SSQUENCE 351 A&amp;: 40620 NW; S9DDD227D2DEEE5D CRC64; NGNAAAAKKG SEQESVKEFL AKAKEDFLKK WENPAQNTAH LOFERIKTL GTOSFGRVHL VKHETGRVKV VKLKGIETH. NEKRIGAAN PFUVKLEFFF FKNNSNLYHV HEYVPGGHF SHLRADCGEF URUAFFLAG TULFFTHS LDITYDLKP FNLLTDQGF IQVTDFGAK KVKG TUTIG GTFETLAGET LISKYVNAV DUWLAUCULY ENLACYPFFF ADQF10TFEK IVSGKVEFF GFG7SNENDY HEKCGKEFS FF </pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <pre>FT TURN 286 289 FT HELIX 290 293 FT HELIX 290 293 ST HELIX 303 307 FT HELIX 303 307 FT HELIX 3046 346 S SEQUENCE 351 A4: 40620 NW; 59DDD227D2DEEE5D CRC64; NGNAAAAKKG SEQESVKEFL AKAKEDFLKK WENPAQNTAM LDQFERIKTI GTGSFGKVML VKHETGNVT AKKLDFGKE DEHADEVAG UUL FFLHS LDLIVRDLKF ENLLIDQQGY IQUTDFGAR RVKGTUTUC GTFERILARD LINKUUT FFLHS LDLIVRDLKF ENLLIDQQGY IQUTDFGAR RVKGTUTUC GTFERILARD LINKUUT FFLHS LDLIVRDLKF ENLLIDQQGY ADQFIQIYEK IVSGKWAFFS HISSDEKEL NHELUVDITK RFGNLKNGVN DIKNKWFAT TDUIAIYQRK VEAPFIPKFK GFGDTSNFDD VEEEEIRVSI NECGKEFSE F</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | FТ        | HELIX      | 264    | 273         |                                                                                          |   |
| <pre>FT HELIX 290 293 FT HELIX 296 296 FT HELIX 296 296 FT HELIX 305 307 FT HELIX 304 307 FT HELIX 304 307 FT HELIX 304 307 FT HELIX 304 500 HY; S9DDD227D2DEEESD CRC64; S0 SCHALAKKG SPGSYKEFL KKKEDFLKK HENPAGNTAH LOFTERIKT. GTGSYGRVML VKHETGHOVY VKKIGTERIKT NEKRIGAAN DFWLVKLEFF FKNNSNLYHV HEVVPGGENF SHLEDCOFF ERMANFLAG. THI FFTHES LDLIYPDLKF FNLLDOGOY IQUTDFGAK KVKGITURIG GTFEYLAPELI LISKYTMAKA DWALGULIY ENLACYPFFF ADQFIGITEK IVSGNTHFFF GFGJSNLHDL HHMLVDLTK FFGHLKNOWN DINNKKFFAT TDWIAIVGK VEAFFFFFF GGGJSNLHDL HHMLVDLTK FFGHLKNOWN DINNKKFFAT TDWIAIVGK VEAFFFFFF GGGJSNLHDL HHMLVDLTK FFGHLKNOWN DINNKKFFAT </pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | FT HELIX 290 293<br>FT HELIX 290 296<br>FT HELIX 303 307<br>FT HELIX 304 346<br>S0 SKOUENCE 351 AJ: 40620 NW; 59DDD227D2DEEESD CRC64;<br>NGNAAAKKG SQCSWEFL AKAEDFLKK WENPAGNTAH LDOFERIKTL GTSTGRVHL<br>NGNAAAKKG SQCSWEFL AKAEDFLKK WENPAGNTAH LDOFERIKTL GTSTGRVHL<br>NGNAAAKG SQCSWEFL AKAEDFLKK WENPAGNTAH LDOFERIKTL GTSTGRVHL<br>NGNAAAKG SQCSWEFL AKAEDFLKK WENPAGNTAH LDOFERIKTL GTSTGRVHL<br>NGNAAAKG SQCSWEFTE HENDIG<br>LOUTDFGAR RUKGTUTU CETPELIAND<br>ADOFLOIYEK IVSGN <del>VAFFS HESSEKKEL NHEL</del><br>VDLTK FFGHLKNGVN DIKNHKWFAT<br>TDWIAIYORK VEAPFIPKFK GPGDTSNFDD YEEEEIRVSI NEKCGKEFSE F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | FT        | TURN       | 286    | 289         |                                                                                          |   |
| FT HELIX 296 298<br>FT HELIX 303 307<br>FT HELIX 303 307<br>FT HELIX 304 348<br>S SEQUENCE 351 A&: 40620 NW; S9DDD227D2DEEE5D CRC64;<br>MONAAAAKKG SEQESVKEFL AKAKEDFLKK WENPAQNTAH LOOFERIKTL GTGSFGRVHL<br>VKHEETGNNY AMKILDKOKV VKLKQIEHTI NEKRILGAND FPUVKLEFS FKNNSNLYHV<br>HEYVPGGENF SHLBADCESE ENADEYLAD, TULFFULHS LDLIYADLKP ENLLIDQQGY<br>IQVTDFGAK KVKGNTUTIG GTFEVLADET LISKYTVAKV DUWALGVLIY ENLAGYPFFF<br>ADQF10TEK IVSGNTHFF GF07SNLKDL KNEWLVDIX FFGULKNOVM DINNKKFFAT<br>TDVIAIVGK VEAFFFFKF GF07SNLKDL KNEWLVDIX NEKCGKEFSF F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | FT HELIX 296 296<br>FT HELIX 303 307<br>FT HELIX 303 307<br>FT HELIX 346 346<br>S SEQUENCE 351 A4: 40620 NW; S9DDD227D2DEEESD CRC64;<br>MGNAAAAKKO SEQUENCKV VEKAGENTL DEKRIGAOWAN FPLVKERFS FKNSNLYNV<br>NEWUPGOEHF SHLARIOFS EDHAERYAG INI FEVLHS LDLIVEDLKP ENLLDQQOY<br>IQUTDFOAR RVKGTUTUL GTPEYLAPEI LISKPINAAD WWALGULY ENAACPPFF<br>ADOPIQIYEK IVSG <del>KWAFS HISSDERDE NHEL</del> VULT REACHEFSE F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | FΤ        | HELIX      | 290    | 293         |                                                                                          |   |
| FT HELIX 303 307<br>FT HELIX 346 348<br>S0 SEQUENCE 351 AA; 40620 MW, 59DDD227D2DEEE5D CRC64;<br>NGNAAAKKG SPOSYMERFL AKAKEDFLKK WENPACNTAH LDOFERIKTL GTOSFGRVHL<br>VKHMETGNHY AMKILDKOKY VKLKOIEHTL NEKRILQAVN PPFLVKLEFS FKINSNLYMY<br>MEYVPGGENF SHLIPACOKE DEMOFIAL HILTEYLHS LDJUTYEDLKP ENLLIDQOOY<br>IQVTDFGAK KVKGMINTLG GTEETLAPEI ILSKUTKAV DUMALOULT ENLACIPPFF<br>ADQF10TEK IVSGKWAF5 HISSUNKAL KNELVUTLK KFGMLENNOVA DINNKKFAT<br>TUTAIATUGK VEAFFIFKR GPOTISMED VEEEEIKVES INEKCGKEFSE F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | FT HELIX 303 307<br>FT HELIX 346 348<br>S0 SEQUENCE 351 AX; 40620 NW; 59DDD227D2DEEE5D CRC64;<br>NGNAAAKKG SEQSEVEFL AKAEMPIKK WEMPAQNTAH LDQFERIKTL GTOSFGKVML<br>VKNHETONNY AKKLDKOKV VKLKQIEHTL MEKRILQAVM FPFLVKLEFS FKNNSNLYRV<br>HETVFGGKTF SELAFGACE CHPEYLVKLTILLGFTVLKHE PLALLOGOFF<br>ADOPIQIYEK IVSGN <del>VNFFS HISSDKKEL NHER</del> VVLLTK FFGNLXNONN DIRNHKWFAT<br>TDWIAIYQRK VEAPFIPKFK GPGDTSNFDD YEEEEIRVSI NEKCGKEFSE F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | FΤ        | HELIX      | 296    | 298         |                                                                                          |   |
| FT HELIX 346 348<br>ST HELIX 346 348<br>ST SEQUENCE 351 AJ: 40620 NW; S9DDD227D2DEEESD CRC64;<br>MCNAAAAKKG SEQESVKEFL AKAKEDFLKK WENPAQNTAH LOPERIKTL GTOSFGRVML<br>VKHETCHNY AMKLIDAGVK VKLKQIEHTI NEKRILGANN PFUYKLEFS FKNNSNLYMV<br>MEYVPGGENF SHLBDICGES ENADEYLAD, TULFFUHS LDLIYADLKP ENLLIDQQGY<br>IQUTDFGAK KVKGTUTLG GTPEYLADEI ILSKYTWAYA DUWALOULY ENLAGYPFFF<br>ADQPIQITEK IVSGNWEFFS HIJSSDLKDL KNEWLVDLK FKGLKNOVM DINNKKFFAT<br>TDWIAIVGK VEAFFFFKF GOPOTSMED VEEEGIKENS INEKCGKERSF F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | FT HELIX 346 348<br>ST SEQUENCE 351 A&: 40620 NW; 59DDD227D2DEEE5D CRC64;<br>MCNAAAKKO SEQESYKEFL AKAKEDFLKK WENPAQNTAH LDQFERIKTL GTOSFGRVHL<br>VKHHETONY ANKIDAKOKV VKLOEITI LEKKIDAVAN FPLVKHESF SKUNSNLYW<br>MEYVPGCEMF SHLRBICHES EDHAGEYLAG IULTFEILS<br>IQVIDFORA RVKGTWITLG CTPERILADE ILSKÖWAKAV DWALGULTY ELMACPPFF<br>ADQFIQIYEK IVSCHWAFFS HISSDEKDE NHEL<br>VDUTALYQRK VEAPFIPKFK GPGDTSNFDD YEEEEIRVSI NERCGKEFSE F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FΤ        | HELIX      | 303    | 307         |                                                                                          |   |
| SO SEQUENCE 551 AJ; 40620 NW; S9DDD227D2DEEESD CRC64;<br>NGNAAAKKG SSOSSWEPEL AKKEDELKK WEDNAONTAL LOGGENEIL, GTOSFGRVHL<br>VEHHETONHY AMKILDKOKV VELKOIEHTL NEERILGANN PFELVKLEFS FENNENLYHV<br>HEYVPGGENF SHLER <u>LGERE EBMADFWAG</u> INLEFETLAD. INLEFETLAD.<br>IQUTDFGK KVKGHTULG GTETLAPEI ILSK VIKAV DUNALOULIY EHAACYPFF<br>ADQF10ITEK IVSG <del>KVKT5 HISSDENKL KNEUV</del> UDLTK FFGMLENNOVN DINNKFFAT<br>TUTAIJOKK VEAFFFFKF GPCJTSWEDV HEEKGKEFSE F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SQ SEQUENCE 351 AA: 40620 NW: 59DD227D2BEESD CRC64:<br>NGNAAAKKG SEQSWERFL AKAEPGIKKE WERAGANTAH LOPFENTITA GTOSFGRUHL<br>VENHETONNY AMKILDRORV VELKQIEHTL DEKRILQAWI FPFLVKLEFS FKNONNLYNV<br>NEVVFGGEFF SHLPAGERS EMALEFALAD. HLTFFVHAR ENLLTQOGGY<br>IQUTDFGFAR RVKGTUTLC GTPFYLAPEI ILSKDTNKAV DWWALGVLIY EMAAGYPFFF<br>ADQPIQIYEK IVSGKVRF5 HISSDLKDE ANELOVDLTK RFONLKNGVD DIANKWFAT<br>TDWIAIYQRK VEAPFIPKFK GFGDTSNFDD YEEEEIRVSI NECCKEFSE F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | FΤ        | HELIX      | 346    | 348         |                                                                                          |   |
| NGNAAAAKG SEQESYKEFL AKAKEDFLKK WENPAQNTAH LOQERIKTL GTOSFGWHL<br>VKHHETGNNY ANKLIDAGKV VKLKQIEHTI NEKRILQAN PFUYKLEFS FKNNSNLYRV<br>HEYVPGGEHF SHLBR <u>LGEST EFRANFYLAG</u> ILLFFYLHS LDLIYRDLKP ENLLIDQGGY<br>IQUTDFGAK RVKGITUTIG GTPEYLAPEI LISKYTNKAV DWALQULY FRAACYPFFF<br>ADQFIQIYEK IVSG <del>ITUTIG GTPEYLAPEI LISKYTNKAV</del> DWALQULY FRAACYPFFF<br>IDUTAIYORK VEAPFIPKER GOPOTISHED YEELEKING NEKCGKEPSE F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NGNAAAAKG SEQESVKEFL AKAKEDFLKK WENPAQNTAH LOGFERIKTL GTOSSGEVHL<br>VKHRETONHY ANKLORGOV VKLOGIENTL NEKRIAOVAN FPLIVKEFS FKDNSNIJWV<br>NEVVPGCENF SHLBRLORE EPHAEPYIAO IULTFEILSK DIVIGUAL PERACHOPFF<br>AUGPIQITEK IVSG <del>INTELG CITELIUSTEL INKLU</del> VDLTK FGNLKNGVN DIXNNKWFAT<br>TDWIAIYQRK VEAPFIPKFK GPGDTSNFDD YEEEEIRVSI NEKCGKEFSE F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SQ        | SEQUENCE   | 351 AA | ; 40620     | NW; 59DDD227D2DEEE5D CRC64;                                                              |   |
| VKHHETONHY AMKILDKOKU VKLKOIEHTL NEKRILOANN PFÜLVKLEFS FKONSNLYHV<br>NEVVGGENF SKLEPAGGES EDMADEKAL INLEFELIS LOLIYODKUE ENLLIDOOGY<br>IQVTDFGFAK KVKO <mark>HTUTLC GTPEYLAPEI ILSKO</mark> YNKAV DUWALGVLIY ENAAGTPFF<br>ADQFIGITEK IVSG <del>KVKIFS HISSOLKUL KNUL</del> VULTK RFGMLENOVU DINNKKFAT<br>TUTAILYGK VEAFFIFKK GODISTRUD VEEDELKKUS NEKCGKERSE F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | VKHRETCNHY AHKILDRORV VELKQIEHTL NERKEILQAVE FPFLVRLEFS FRONSNLYHV<br>NEYVGCHF SHLBALENSE EMALEVIAL ILLFFYLIAE LINEROVER ENLILGOGGY<br>IQYTDFGFAR RVRGTUTLC GTPFYLAPEI ILSKONKAV DUWALGVLIY ENAGYPPFF<br>ADQPIQIYEK IVSGV <del>AFFS HISSDERDE NHEL</del> WULTK RFONLKNGAN DIRNKWFAT<br>TDWIAIYQRK VEAPFIPKYK GFGDTSNFDD YEEEEIRVSI NECCKEFSE F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           | MGNAAAAKKG | SEQESV | KEFL AKAI   | KEDFLKK WENPAONTAH LDOFERIKIL GIGSFGRVML                                                 |   |
| NETVPSCENF SULER <u>JCEFF SUNAFFIAG TVITF</u> TINS IDLITNDLKP ENLLIDQOGY<br>IQUTDFCRK RVKGITULG CTFFILJELI LISKYTNKAV DUWALGULI VENLAGYPFF<br>ADGPIGITEK IVSG <del>IVETS HISSUNDL RNDLU</del> VDLTK RFGNLENGVA DINNKKFFAT<br>TDUTAIVGRK VEAFFIFRFK GPGJTSHDD YEEEEIRVSI NEKCGEFFS F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | METVPGCEMF SHUR <u>PLORES EDNATEVING TUL T</u> FYIHS LDLIYEDLKP ENLLIDGOGY<br>IQUTDFGAR RVKGTUTLC GTPFYLAPFI LISR/NYKAN DUWLACULT ENLACYDFFF<br>ADGPIGIYEK IVSG <del>WAFFS HISSDEKDLE NHED</del> UVDLTK RFGNLKNGVM DINNHKWFAT<br>TDWIAIYORK VEAPFIPKFK GPGDTSNFDD YEEEEIRVSI NEKCGKEFSE F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           | VKHMETGNHY | AMKILD | KOKV VKLI   | QIEHTL NEKRILQAVN FPFLVKLEFS FKDNSNLYMV                                                  |   |
| IQUTDFGFAR RVKG <mark>H</mark> TWILC GTFEYLAPEI ILS <mark>KD</mark> YNKAV DWALGULIY ENAAGYPFFF<br>Adqpigitek IVSG <del>NRTJ HISSDIRNGL RNHG</del> VULIK FRAGNANOVN DIRNKFFAT<br>TDWIAIVGR VEAFFFRFK GPOTISNED YEEDEINSI NEKCGREPSE F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | IQUTDFGFAR RVKGTUTLC GTPEYLAPEI ILSKDYNKAV DUBALGVLIY ENALGYDPFF<br>ADQPIQIYER IVSGTV <del>AFFS HISSDERDEL NNEL</del> GVDLTK RFGNLKNGVN DIRHKWFAT<br>TDWIAIYQRK VEAPFIPKYK GPGDTSNFDD YEEEEIRVSI NEKCOKEFSE F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           | MEYVPGGEMF | SHLRRI | CDFS FDW    | DEVAAO JULTFEYLHS LDLIYRDLKP ENLLIDOOGY                                                  |   |
| ADOPIQIYEK IVSG <del>AVREFS HESSELKUL KHEL</del> VULIK REGNLKNOVM DIKNHKWFAT<br>TDWIAIYQRK VEAPFIPKEK GPGDTSNEDD YEEEEIRVSI NEKCGKEFSE F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ADOPIQIYEE IVSO <del>NAFFS HISSDERDEL NULD</del> UDLTE PFORLENGUN DINNHEWPAT<br>TDWIAIYORE VEAPFIPEFE GPGDTSNFDD YEEEEIRUSI NEKCGKEFSE F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           | IOVTDEGEAR | RVKGET | WTLC GTPI   | VLAPET ILSK VNKAV DHWALGULTY EMAAGYPPFF                                                  |   |
| TDUIAIYQRK VEAPFIPKFK GPGDTSNFDD YEEELIRVSI NEKCGKEFSE F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TDWIAIYQRK VEAPFIPKFK GPGDTSNFDD YEEEEIRVSI NEKCGKEFSE F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           | ADOPTOTYER | TVSG   |             | DVDLTK REGNLKNGVN DIKNHKNEAT                                                             |   |
| IPPEREIQUE TERITETRIE OF OPTIME PP IEBEETETET HEROOREISE I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           | TDUTATYORN | VEADET | PKEK GPGI   | TENERD VEFETURET NEVCOVERES F                                                            |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           | QRF        | VEARIT | . AFK OFGI  | INTER TREBERING AND AND A TREASTREE OF I                                                 |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           |            | _      |             |                                                                                          | 2 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           |            |        |             |                                                                                          |   |

According to Swissprot, both T1 and T3 are possible phosphorylation sites. If you really needed to know which was the case here, or whether it was a mixture, you'd have to acquire more data. Maybe try a different enzyme or target the incomplete cleavage peptide that includes the preceding KG so as to move the sites towards the centre of the peptide, where you might get stronger b and y fragments



If you are using Mascot 2.3 or earlier, the delta score calculation is not performed in Peptide View. These are our suggested guidelines when using Mascot for site analysis:

If alternative sites differ by 20 in score, safe-ish to disregard lower one(s)

If alternative sites have similar scores, you may be able to choose one by inspection. But, be careful ... one peak is just one peak

Often, you just can't differentiate between adjacent sites, even with great data.



Now, back to the challenge of finding PT modifications. There are many hundreds of modifications in Unimod, yet I've emphasised the importance of using the minimum number of variable modifications in a search. So, how are we supposed to find unusual modifications?

If you are searching uninterpreted MS/MS data, the efficient way to find unusual modifications, as well as variations in the primary sequence, is a two pass search. The first pass search is a simple search of the entire database with minimal modifications. The protein hits found in the first pass search are then selected for an exhaustive second pass search. During this second pass search, we can look for all possible modifications, sequence variants, and non-specific cleavage products.

Because only a handful of entries are being searched, search time is not an issue. It would be extremely difficult to calculate meaningful statistics for the additional matches in an error tolerant search, and we don't report expect values. The evidence for the presence of any particular protein are the matches from the first pass search. The additional matches from the second pass search serve to increase coverage and may discover interesting modifications or SNPs.



For modifications, an error tolerant search looks for one unsuspected modification per peptide in addition to those mods specified as fixed or variable. This is sufficient because it will be rare to get two unsuspected mods on a single peptide

| Error Tolerant Search                                                           |        |
|---------------------------------------------------------------------------------|--------|
| Primary sequence variants                                                       |        |
| Protein database                                                                |        |
| Look for all residue substitutions                                              |        |
| No attempt to identify single base insertions deletions because of frame shifts | £      |
| <ul> <li>Nucleic acid database</li> </ul>                                       |        |
| Look for all single base substitutions, insertions & deletions                  | ons    |
|                                                                                 |        |
| MASCOT : Modifications © 2007-2012 Matrix Science                               | MATRIX |

The error tolerant search also looks for sequence variants, such as single nucleotide polymorphisms (SNPs) or sequencing errors.

For a protein database, we can't look for the consequences of inserted or deleted bases, because these give rise to frame shifts, and the entire sequence changes from that point on.



There are some constraints on the standard, first pass search



Otherwise, submitting the search is just like submitting a standard search except that you check the Error Tolerant Checkbox



You see two sets of progress reports

| 🗐 Pept      | tide                                                                | Summa    | ary Report (Er   | ror tolerant e   | xample) - Micro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | osoft Intern  | et Exp | lorer  |         |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
|-------------|---------------------------------------------------------------------|----------|------------------|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------|--------|---------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| File        | Edit                                                                | View     | Favorites To     | iols Help        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |        |        |         |       | and had been a state of the sta |  |  |  |  |
| G           | Back                                                                | - 6      | ) - 💌 💈          | ) 🟠 🔎 s          | earch $ \lacelow \l$ | rites 🚱       | 8.     | 2      | 🔁 -     | Pot   | vermarks 🌃 \land %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
| :<br>Addres | - <b>A</b>                                                          | http://s | www.matrixscienc | e.com/cni/master | results.pl?file=la                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | lata/20070626 | FoGeri | e5.dat |         | 1     | V 🗗 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
| -           |                                                                     |          |                  |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |        |        |         |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| Sel         | ect A                                                               |          | Select None      | Searc            | ch Selected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ентог         | tolera | ant    |         |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
|             |                                                                     |          |                  |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |        |        |         |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| 1.          | <u>×</u>                                                            | AAS17    | 08 Mass          | : 56371 !        | Score: 782                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Queries       | s mat  | ched:  | 27 emPl | AI: 0 | .78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
|             | Check to include this hit in error tolerant search                  |          |                  |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |        |        |         |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
|             | Dury Observed Mr/emb) Mr/oplo). Dolta Mise Sone Evment Dank Dantide |          |                  |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |        |        |         |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
|             | Qu                                                                  | iery     | Observed         | Mr(expt)         | Mr(calc)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Delta         | Miss   | Score  | Expect  | Rank  | Peptide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
| 6           | ~                                                                   | 27       | 462.6807         | 923.3468         | 923.5116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -0.1649       | 0      | 33     | 16      | 1     | R.FPYVALSK.T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
|             |                                                                     | 41       | 517.1760         | 1032.3375        | 1032.5604                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.2229       | 0      | 70     | 0.0036  | 3     | R.GSSIFGLAPGK.A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
|             |                                                                     | 62       | 564.6804         | 1127.3463        | 1127.5764                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.2301       | 0      | 10     | 2.8e+03 | 6     | R.GFFLFVEGGR.I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
|             | ~                                                                   | 65       | 567.6567         | 1133.2987        | 1133.5499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.2511       | U      | 44     | 1.1     | 1     | K. GREVISVARK.A + Uxidation (A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
|             |                                                                     | 100      | 653 2101         | 1226.3836        | 1226.6329                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.2473       |        | 20     | 5 70-05 | 2     | K.LOPEIPLANDK.F + OXIGATION (H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
|             |                                                                     | 124      | 710.2235         | 1418 4324        | 1418 7154                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.2829       |        | 95     | 5.70-05 | ÷.    | K CNFOTTCISABAB F + Acety] (N-term): $f+72$ 0211 at N-term Cl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
|             |                                                                     | 12.6     | 726.1806         | 1450.3465        | 1450 6477                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.3011       |        | 73     | 0.0012  | ÷.    | P. NEVSDADUDASAD. 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
|             | -                                                                   | 133      | 499.1349         | 1494.3828        | 1494.6694                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.2866       | 0      | 92     | 0.0011  | î     | L.DPSLMEMTEAALR.L + 2 Oxidation (M)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
|             | ~                                                                   | 145      | 526.1538         | 1575,4396        | 1575,7814                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.3418       | 0      | (61)   |         | 1     | R.ALTETIMEDDAIER.A + [-48.0000 at F8]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
|             | ~                                                                   | 156      | 820.7283         | 1639.4420        | 1639.7763                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.3343       | 0      | 97     | 5.1e-06 | 1     | R.ALTETINFDDAIER.A + Oxidation (M)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
| i i         | ~                                                                   | 165      | 841.2310         | 1680.4474        | 1680.8029                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.3554       | 0      | (75)   |         | 1     | R_ALTETINFDDAIER.A + Oxidation (M); [+41.0266 at N-term A]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
| 6           | ~                                                                   | 170      | 864.2888         | 1726.5629        | 1726.9294                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.3664       | 0      | 44     | 0.9     | 1     | K.AYTVLLYGNGPGYVLK.D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
| 6           | ~                                                                   | 176      | 879.2425         | 1756.4705        | 1756.8420                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.3715       | 0      | 83     |         | 1     | G.IIPVEEENPDFWNR.E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
|             |                                                                     | 204      | 956.2437         | 1910.4729        | 1910.8601                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.3872       | 0      | 29     | 28      | 3     | R.DSTLDPSLMEMTEAALR.L + 2 Oxidation (M)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
| 6           | ~                                                                   | 208      | 975.8100         | 1949.6055        | 1950.0245                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.4190       | 0      | 85     | 6.6e-05 | 1     | K.NLIIFLGDGMGVSTVTAAR.I + Oxidation (M)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
| 6           | ~                                                                   | 209      | 976.2340         | 1950.4534        | 1950.8555                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.4021       | 0      | (27)   | 42      | 1     | K.DGARPDVTESESGSPEYR.Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
| 6           | ~                                                                   | 211      | 656.1752         | 1965.5039        | 1964.8712                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.6327        | 0      | (72)   |         | 1     | K.DGARPDVTESESGSPEYR.Q + [+14.0157 at T8]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
|             | _                                                                   | 213      | 664.5518         | 1990.6336        | 1991.0510                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.4174       | 0      | (58)   |         | 4     | K_NLIIFLGDGMGVSTVTAAR.I + Oxidation (M); [+41.0266 at N-term N]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
|             | ~                                                                   | 216      | 1001.2027        | 2000.3908        | 2000.8058                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.4150       | 0      | (65)   | 0.0069  | 1     | R.MGTPDPEYPDDYSQGGTR.L + Oxidation (M)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
|             | × 1                                                                 | 217      | 667.8046         | 2000.3919        | 2000.8058                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.4139       |        | 70     | 0.002   | 1     | K.MUTPPETPUTSUUGR.L + UXIdation (M)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
|             | × 1                                                                 | 222      | 691 9205         | 2007.4466        | 2007.8770                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.4304       |        | 75     |         | 1     | N_DUMARDVIESESUSTEIK.V + [ <del>+37.V213</del> at N-TeTM J]<br>P.MCTPDPEVPDDVSCCCTP I + Acetyl (N-term): Ovidation (N): [-0.9840 at F2]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
|             | -                                                                   | 252      | 784.5440         | 2350.6103        | 2351.1030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.4927       |        | (61)   |         | 1     | REMOVE DEETHAGE DVAVEAR.G + $[-17,0265]$ at N-term 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
|             | -                                                                   | 253      | 790.2187         | 2367.6341        | 2368.1295                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.4954       |        | 94     | 7.6e-06 | ÷.    | R. OOSAVPLDEETHAGEDVAVFAR. G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
|             | ~                                                                   | 2 60     | 809.2208         | 2424.6406        | 2425.1510                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.5104       | 0      | (66)   |         | 1     | R.00SAVPLDEETHAGEDVAVFAR.G + [+57.0215 at N-term 0]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
|             | ~                                                                   | 275      | 920.5878         | 2758.7415        | 2759.3582                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.6167       | 0      | 90     |         | 1     | R.QEGCQDIATQLISNMDIDVILGGGR.K + Acetyl (N-term); Oxidation (M); [-9.9476 at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
|             |                                                                     | _        |                  |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |        |        |         |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| <           |                                                                     |          |                  |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |        |        |         |       | >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
| ۲           |                                                                     |          |                  |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |        |        |         |       | 🗟 🔮 Internet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
|             |                                                                     |          |                  |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |        |        |         |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
|             | <b>A</b> .                                                          | ۸ C      | COT              | <b>•</b> • • •   | adifia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ation         | •      |        |         |       | MATRIX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
|             |                                                                     | -12      |                  | : ///            | ounc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | auon          | 5      |        |         |       | © 2007-2012 Matrix Science                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
| L           |                                                                     |          |                  |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |        |        |         |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |

And here is the first hit of the results report. The additional matches, found in the error tolerant search, are the ones without expect values. One of these, query 133, is a simple, non-specific peptide with a very good score. There's another example for query 176. The error tolerant search is a much better way of picking up non-specific peptides than searching the entire database with semi-trypsin or no enzyme. We only fail to get such matches in an error tolerant search if there are no matches to the protein in the first pass search. However, you have to ask yourself whether you would believe a protein hit in which the only peptide match was non-specific. I think the answer is no.



The matches from an error tolerant search are aggressively filtered to remove junk matches

| 🗿 Pe     | ptide                                                                 | Summ    | ary Report (Er   | rror tolerant e     | kample) - Micro    | osoft Intern  | et Exp     | lorer  |         |               |                                                                                                                 |  |  |  |  |
|----------|-----------------------------------------------------------------------|---------|------------------|---------------------|--------------------|---------------|------------|--------|---------|---------------|-----------------------------------------------------------------------------------------------------------------|--|--|--|--|
| File     | Edit                                                                  | View    | Favorites To     | ools Help           |                    |               |            |        |         |               | a da fa se a companya da 🦓 |  |  |  |  |
| G        | Back                                                                  | • €     | ) · 🖹 💈          | 🖌 🏠 🖉 s             | earch 🤺 Favo       | rites 🧭       | <b>@</b> • | 2      | 🔁 •     | Pov           | vermarks 膬 🔺 ۶                                                                                                  |  |  |  |  |
| Addre    | ss 🍓                                                                  | http:// | www.matrixscienc | ce.com/cgi/master   | results.pl?file=/e | data/20070626 | /FoGcri    | e5.dat |         |               | 💌 🔁 Go                                                                                                          |  |  |  |  |
|          |                                                                       |         |                  |                     |                    |               |            |        |         |               | ,                                                                                                               |  |  |  |  |
| Se       | elect.                                                                | All     | Select None      | Searc               | h Selected         | Еггог         | tolera     | nt     |         |               |                                                                                                                 |  |  |  |  |
| · .      |                                                                       | 11517   | Mage             | 56371               | Score: 782         | Queries       | mat        | ched.  | 27 emPl | <b>ατ</b> • ο | 78                                                                                                              |  |  |  |  |
|          | P                                                                     | UMALP   | PA NID: - 1      | Homo sapien:        | 8                  | •             |            |        |         |               |                                                                                                                 |  |  |  |  |
|          |                                                                       | heck    | to include       | this hit in         | n error tole       | erant sear    | ch         |        |         |               |                                                                                                                 |  |  |  |  |
|          | Query Observed Mr(expt) Mr(calc) Delta Miss Score Expect Rank Peptide |         |                  |                     |                    |               |            |        |         |               |                                                                                                                 |  |  |  |  |
|          | _0                                                                    | uery    | Observed         | Mr(expt)            | Mr(calc)           | Delta         | Miss       | Score  | Expect  | Rank          | Peptide                                                                                                         |  |  |  |  |
|          | ⊻                                                                     | 27      | 462.6807         | 923.3468            | 923.5116           | -0.1649       |            | 33     | 16      | 1             | R.FPIVALSK.T                                                                                                    |  |  |  |  |
|          |                                                                       | 52      | 564 6804         | 1032.3373           | 1127.5764          | -0.2229       | 0          | 10     | 2.8e+03 | 5             | R. GSSIFGLAFGK.A                                                                                                |  |  |  |  |
|          |                                                                       | 65      | 567.6567         | 1133.2987           | 1133.5499          | -0.2511       | 0          | 44     | 1.1     | 1             | $R_{\rm GNEVISVOR,A} + 0xidation (M)$                                                                           |  |  |  |  |
|          |                                                                       | 86      | 614.2001         | 1226.3856           | 1226.6329          | -0.2473       | 0          | 28     | 41      | 2             | K.LGPEIPLAMDR.F + Oxidation (M)                                                                                 |  |  |  |  |
|          | <b>V</b>                                                              | 100     | 653.2101         | 1304.4057           | 1304.6837          | -0.2780       | 0          | (87)   | 5.7e-05 | 1             | K. GNFQTIGLSAAAR.F                                                                                              |  |  |  |  |
|          | <b>v</b>                                                              | 124     | 710.2235         | 1418.4324           | 1418.7154          | -0.2829       | 0          | 95     |         | 1             | K. <u>G</u> NFQTIGLSAAAR.F + Acetyl (N-term); [+72.0211 at N-term G]                                            |  |  |  |  |
|          | <b>V</b>                                                              | 126     | 726.1806         | 1450.3465           | 1450.6477          | -0.3011       | 0          | 73     | 0.0012  | 1             | R. NWYSDADVPASAR. Q                                                                                             |  |  |  |  |
|          | <b>V</b>                                                              | 133     | 499.1349         | 1494.3828           | 1494.6694          | -0.2866       | 0          | 92     |         | 1             | L.DPSLMEMTEAALR.L + 2 Oxidation (M)                                                                             |  |  |  |  |
|          | <b>v</b>                                                              | 145     | 526.1538         | 1575.4396           | 1575.7814          | -0.3418       | 0          | (61)   |         | 1             | R.ALTETINFDDAIER.A + [-48.0000 at F8]                                                                           |  |  |  |  |
|          | <b>v</b>                                                              | 156     | 820.7283         | 1639.4420           | 1639.7763          | -0.3343       | 0          | 97     | 5.1e-06 | 1             | R.ALTETIMFDDAIER.A + Oxidation (M)                                                                              |  |  |  |  |
|          | ✓                                                                     | 165     | 841.2310         | 1680.4474           | 1680.8029          | -0.3554       | 0          | (75)   |         | 1             | R_ALTETIMEDDAIER.A + Oxidation (M); [+41.0266 at N-term A]                                                      |  |  |  |  |
|          | <ul><li>✓</li></ul>                                                   | 170     | 864.2888         | 1726.5629           | 1726.9294          | -0.3664       | 0          | 44     | 0.9     | 1             | K.AYTVLLYGNGPGYVLK.D                                                                                            |  |  |  |  |
|          | <ul><li>✓</li></ul>                                                   | 176     | 879.2425         | 1756.4705           | 1756.8420          | -0.3715       | 0          | 83     |         | 1             | G. IIPVEEENPDFWNR.E                                                                                             |  |  |  |  |
|          |                                                                       | 204     | 956.2437         | 1910.4729           | 1910.8601          | -0.3872       | 0          | 29     | 28      | 3             | K.DSTLDPSLARMTERALR.L + 2 Oxidation (M)                                                                         |  |  |  |  |
|          |                                                                       | 200     | 975.8100         | 1949.6033           | 1950.0245          | -0.4190       |            | (27)   | 6.68-03 | 1             | K.RLIIILGDOMGVSIVIAAK.I + OXIGATION (M)                                                                         |  |  |  |  |
|          |                                                                       | 211     | 656.1752         | 1965.5039           | 1964.8712          | 0.6327        |            | (72)   |         | - 1           | K.DCARPDVTESESGSPEVR.0 + [+14.0157 at T8]                                                                       |  |  |  |  |
|          |                                                                       | 213     | 664.5518         | 1990.6336           | 1991.0510          | -0.4174       | 0          | (58)   |         | 4             | K.NLIIFLGDGMGVSTVTAAR.I + Oxidation (M); [+41.0266 at N-term N]                                                 |  |  |  |  |
|          | <b>v</b>                                                              | 216     | 1001.2027        | 2000.3908           | 2000.8058          | -0.4150       | 0          | (65)   | 0.0069  | 1             | R.MGTPDPEYPDDYSQGGTR.L + Oxidation (M)                                                                          |  |  |  |  |
|          | <b>v</b>                                                              | 217     | 667.8046         | 2000.3919           | 2000.8058          | -0.4139       | 0          | 70     | 0.002   | 1             | R.MGTPDPEYPDDYSQGGTR.L + Oxidation (M)                                                                          |  |  |  |  |
|          | <b>v</b>                                                              | 218     | 670.1561         | 2007.4466           | 2007.8770          | -0.4304       | 0          | 75     |         | 1             | K_DGARPDVTESESGSPEYR.Q + [+57,0215 at N-term D]                                                                 |  |  |  |  |
|          | <b>V</b>                                                              | 222     | 681.8205         | 2042.4397           | 2041.8324          | 0.6073        | 0          | (61)   |         | 1             | R_MGTPDPEYPDDYSQGGTR.L + Acet (N-term); Oxidation (M); [-0.9840 at E7]                                          |  |  |  |  |
|          | <b>v</b>                                                              | 252     | 784.5440         | 2350.6103           | 2351.1030          | -0.4927       | 0          | (69)   |         | 1             | R_QQSAVPLDEETHAGEDVAVFAR.G + [ Possible Assignments:                                                            |  |  |  |  |
|          | <b>v</b>                                                              | 253     | 790.2187         | 2367.6341           | 2368.1295          | -0.4954       | 0          | 94     | 7.6e-06 | 1             | R. QQSAVPLDEETHAGEDVAVFAR. G                                                                                    |  |  |  |  |
|          | <b>V</b>                                                              | 260     | 809.2208         | 2424.6406           | 2425.1510          | -0.5104       | 0          | (66)   |         | 1             | R_QQSAVPLDEETHAGEDVAVFAR.G + [Carbamidomethyl (N-term) [+57.0215]                                               |  |  |  |  |
|          | <                                                                     | 275     | 920.5878         | 2758.7415           | 2759.3582          | -0.6167       | 0          | 90     |         | 1             | R_QEGCQDIATQLISNMDIDVILGGGR.K Carboxymethyl (N-term) [+58.0055] .9476 at :                                      |  |  |  |  |
| _        |                                                                       |         |                  |                     |                    |               |            |        |         |               |                                                                                                                 |  |  |  |  |
| <u>s</u> |                                                                       |         |                  |                     |                    |               |            |        |         |               |                                                                                                                 |  |  |  |  |
| 2 1:A    | AA517                                                                 | 08 2:AA | AH09647 3:CAJ15  | 5103 4:512076 5:    | AAA51709 8:AAA     | 98616         |            | _      |         | _             | S Internet                                                                                                      |  |  |  |  |
| N        | A                                                                     | 45      | SCO <sup>-</sup> | <b>F</b> : <i>M</i> | odific             | ation         | s          |        |         |               | © 2007-2012 Matrix Science                                                                                      |  |  |  |  |

Take a look at the match to query 218. The mass tolerance for this search was fairly wide, so the observed mass difference could correspond to either carbamidomethylation or carboxymethylation at the N-terminus. Since this sample was alkylated with iodoacetamide, we would choose carbamidomethylation as the more likely suspect, especially as this brings the error on the precursor mass into line with the general trend, whereas carboxymethylation would give an error of +0.6 Da. The assignment to carbamidomethylation is also very believable, because this is a known artefact of over-alkylation. The same modification is found for query 260.

| 🗿 Pept     | ide Su                                                           | mma <mark>ry Report (</mark> E | rror tolerant e     | xample) - Micro     | osoft Intern  | et Exp     | lorer  |         |      |                                                                                                                  |  |  |  |  |  |
|------------|------------------------------------------------------------------|--------------------------------|---------------------|---------------------|---------------|------------|--------|---------|------|------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| File       | Edit \                                                           | view Favorites To              | ools Help           |                     |               |            |        |         |      | Na katala 🔊  |  |  |  |  |  |
| <b>(</b> ) | Back 🔹                                                           | ۲ 🖹 🕄                          | ) 🏠 🔎 s             | iearch 🤺 Favo       | rites 🧭       | <b>@</b> • | 2      | 🔁 -     | Poi  | vermarks 🌃 🔺 %                                                                                                   |  |  |  |  |  |
| Address    | 🕘 ht                                                             | tp://www.matrixscien           | ce.com/cgi/master   | _results.pl?file=/e | data/20070626 | /FoGcrie   | eS.dat |         |      | 💌 🄁 Go                                                                                                           |  |  |  |  |  |
|            |                                                                  |                                |                     |                     |               |            |        |         |      | <u>^</u>                                                                                                         |  |  |  |  |  |
| Sele       | ect All                                                          | Select None                    | e Searc             | ch Selected         | Еггог         | tolera     | nt     |         |      |                                                                                                                  |  |  |  |  |  |
| l          |                                                                  | 51709 Mage                     | . 56221             | Score: 702          | Querier       |            | ched   | 27 emP/ |      | 79                                                                                                               |  |  |  |  |  |
| <b>1</b> . | HUM                                                              | ALPPA NID: - 1                 | Homo sapien         | 30010. 702          | Querres       | s mac      | cheu.  | 27 CHEZ | u. 0 | . 10                                                                                                             |  |  |  |  |  |
| 6          | Check to include this hit in error tolerant search               |                                |                     |                     |               |            |        |         |      |                                                                                                                  |  |  |  |  |  |
|            | Duary Obsawad Ny(amt) Ny(ala) Balta Nice Cova Pomet Dank Dantida |                                |                     |                     |               |            |        |         |      |                                                                                                                  |  |  |  |  |  |
|            | Quer                                                             | y Observed                     | Mr(expt)            | Mr(calc)            | Delta         | Miss       | Score  | Expect  | Rank | Peptide                                                                                                          |  |  |  |  |  |
| E          | 2 2                                                              | 462.6807                       | 923.3468            | 923.5116            | -0.1649       | 0          | 33     | 16      | 1    | R.FPYVALSK.T                                                                                                     |  |  |  |  |  |
|            | 3                                                                | 1 517.1760                     | 1032.3375           | 1032.5604           | -0.2229       | U          | 70     | 0.0036  | 3    | R. GSSIFGLAPGK.A                                                                                                 |  |  |  |  |  |
|            | a -                                                              | 567 6567                       | 1127.3403           | 1127.5709           | -0.2501       | 0          | 10     | 2.00+03 | 1    | P CHEVISION A + Ovidation (M)                                                                                    |  |  |  |  |  |
|            | 2 <u>2</u>                                                       | 6 614.2001                     | 1226.3856           | 1226.6329           | -0.2473       | 0          | 28     | 41      | 2    | K.LGPEIPLANDR.F + Oxidation (M)                                                                                  |  |  |  |  |  |
| L R        | 10                                                               | 653.2101                       | 1304.4057           | 1304.6837           | -0.2780       | 0          | (87)   | 5.7e-05 | 1    | K. GNFOTIGLSAAAR.F                                                                                               |  |  |  |  |  |
| 6          | 12                                                               | 4 710.2235                     | 1418.4324           | 1418.7154           | -0.2829       | 0          | 95     |         | 1    | K.GNFQTIGLSAAAR.F + Acetyl (N-term); [+72.0211 at N-term 6]                                                      |  |  |  |  |  |
|            | 12                                                               | 6 726.1806                     | 1450.3465           | 1450.6477           | -0.3011       | 0          | 73     | 0.0012  | 1    | R. NWYSDADVPASAR. Q                                                                                              |  |  |  |  |  |
|            | 13                                                               | 499.1349                       | 1494.3828           | 1494.6694           | -0.2866       | 0          | 92     |         | 1    | L.DPSLMEMTEAALR.L + 2 Oxidation (M)                                                                              |  |  |  |  |  |
| E          | 14                                                               | 526.1538                       | 1575.4396           | 1575.7814           | -0.3418       | 0          | (61)   |         | 1    | R.ALTETIMEDDAIER.A + [-48.0000 at F8]                                                                            |  |  |  |  |  |
| E          | 15                                                               | 6 820.7283                     | 1639.4420           | 1639.7763           | -0.3343       | 0          | 97     | 5.1e-06 | 1    | R.ALTETIMEDDAIER.A + Oxidation (M)                                                                               |  |  |  |  |  |
| 5          | <ul> <li>16</li> </ul>                                           | 841.2310                       | 1680.4474           | 1680.8029           | -0.3554       | 0          | (75)   |         | 1    | R_ALTETIMEDDAIER.A + Oxidation (M); [+41.0266 at N-term A]                                                       |  |  |  |  |  |
| 6          | 17                                                               | 864.2888                       | 1726.5629           | 1726.9294           | -0.3664       | 0          | 44     | 0.9     | 1    | K.AYTVLLYGNGPGYVLK.D                                                                                             |  |  |  |  |  |
| E          | 17                                                               | 879.2425                       | 1756.4705           | 1756.8420           | -0.3715       | 0          | 83     |         | 1    | G.IIPVEEENPDFWNR.E                                                                                               |  |  |  |  |  |
|            | 20                                                               | 956.2437                       | 1910.4729           | 1910.8601           | -0.3872       | 0          | 29     | 28      | 3    | R.DSTLDPSLMEMTEAALR.L + 2 Oxidation (M)                                                                          |  |  |  |  |  |
|            | 20                                                               | 975.8100                       | 1949.6055           | 1950.0245           | -0.4190       | 0          | 85     | 6.6e-05 | 1    | K.NLIIFLGDGMGVSTVTAAR.I + Oxidation (M)                                                                          |  |  |  |  |  |
|            | 20                                                               | 976.2340                       | 1950.4534           | 1950.8555           | -0.4021       | 0          | (27)   | 42      | 1    | K.DGARPDVTESESGSPEYR.Q                                                                                           |  |  |  |  |  |
| 6          | 21                                                               | <u>1</u> 656.1752              | 1965.5039           | 1964.8712           | -0 4174       | U          | (72)   |         | 1    | K.DURKPDVIESESUSPEIR.U + $[+14.0157]$ at T8]<br>K.W.TIFLEDCHERVSTUTARD I + Oridation (M): [+41.0266 at N-term N] |  |  |  |  |  |
|            | 21                                                               | <u>6</u> 1001.3310             | 2000.3908           | 2000.8058           | -0.4150       | 0          | (65)   | 0.0069  | 1    | R.MCTPDPEVPDDVSOGGTR.L. + Oxidation (N)                                                                          |  |  |  |  |  |
|            | 21                                                               | 7 667.8046                     | 2000.3919           | 2000.8058           | -0.4139       | 0          | 70     | 0.002   | -    | R.MGTPDPEYPDDYSOGGTR.L + Oxidation (M)                                                                           |  |  |  |  |  |
|            | 21                                                               | 8 670.1561                     | 2007.4466           | 2007.8770           | -0.4304       | 0          | 75     |         | 1    | K.DGARPDVTESESGSPEYR.Q + [+57.0215 at N-term D]                                                                  |  |  |  |  |  |
|            | 22                                                               | 2 681.8205                     | 2042.4397           | 2041.8324           | 0.6073        | 0          | (61)   |         | 1    | R.MGTPDPEYPDDYSQGGTR.L + Acetyl (N-term); Oxidation (M); [-0.9840 at E7]                                         |  |  |  |  |  |
| 6          | 25                                                               | 2 784.5440                     | 2350.6103           | 2351.1030           | -0.4927       | 0          | (69)   |         | 1    | R_QQSAVPLDEETHAGEDVAVFAR.G + [-17.0265 at N-term Q]                                                              |  |  |  |  |  |
| E          | 25                                                               | 3 790.2187                     | 2367.6341           | 2368.1295           | -0.4954       | 0          | 94     | 7.6e-06 | 1    | R. QQSAVPLDEETHAGEDVAVFAR. G                                                                                     |  |  |  |  |  |
| E          | 26                                                               | 809.2208                       | 2424.6406           | 2425.1510           | -0.5104       | 0          | (66)   |         | 1    | R_QQSAVPLDEETHAGEDVAVFAR.G + [+57.0 Possible Assignments:                                                        |  |  |  |  |  |
| E          | 27                                                               | 920.5878                       | 2758.7415           | 2759.3582           | -0.6167       | 0          | 90     |         | 1    | R.QEGCQDIATQLISNMDIDVILGGGR.K + Act                                                                              |  |  |  |  |  |
|            |                                                                  |                                |                     |                     |               |            |        |         |      | Gin->pyro-Giu (N-Cerm Q) [-17.0285]                                                                              |  |  |  |  |  |
| <          |                                                                  |                                |                     |                     |               |            |        |         |      | 8                                                                                                                |  |  |  |  |  |
| 🕘 1:AAA    | 451708                                                           | 2:AAH09647 3:CA315             | 5103 4:512076 5:    | AAA51709 8:AAA      | 98616         |            |        |         |      | 🛜 🔮 Internet                                                                                                     |  |  |  |  |  |
| N          | ٨A                                                               | SCO                            | <b>T</b> : <i>M</i> | odific              | ation         | s          |        |         |      | © 2007-2012 Matrix Science                                                                                       |  |  |  |  |  |

Another easily believable assignment is pyro-Glu for the match to query 252.

| 🕲 Peptide Summary Report (Error tolerant example) - Microsoft Internet Explorer 📃 💽 🔀                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                          |           |           |           |         |      |       |         |      |                                                                                                                                |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-----------|-----------|-----------|---------|------|-------|---------|------|--------------------------------------------------------------------------------------------------------------------------------|--|
| File Edk View Favorites Tools Help                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                          |           |           |           |         |      |       |         |      |                                                                                                                                |  |
| A part - A - R & A Cauch Stranger A A. B. Comments 24 4 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                          |           |           |           |         |      |       |         |      |                                                                                                                                |  |
| Constructs of the construction of the construc |                                                                                                          |           |           |           |         |      |       |         |      |                                                                                                                                |  |
| Address                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | , Address 🍘 http://www.matrixsclence.com/cgi/matter_results.pl/file=/data/20070626/jFoGcrie5.dat 🔤 🔂 600 |           |           |           |         |      |       |         |      |                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                          |           |           |           |         |      |       |         |      |                                                                                                                                |  |
| Select                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Select All Select None Search Selected Error tolerant                                                    |           |           |           |         |      |       |         |      |                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                          |           |           |           |         |      |       |         |      |                                                                                                                                |  |
| 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1. AAAS1708 Hass: 56371 Score: 782 Queries matched: 27 emPAI: 0.78<br>HUNLIPAIND: - Homo saminan         |           |           |           |         |      |       |         |      |                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nonAurra NID: - nomo septens                                                                             |           |           |           |         |      |       |         |      |                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                          |           |           |           |         |      |       |         |      |                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | uery                                                                                                     | Observed  | Mr(expt)  | Mr(calc)  | Delta   | Miss | Score | Expect  | Rank | Peptide                                                                                                                        |  |
| <b>v</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 27                                                                                                       | 462.6807  | 923.3468  | 923.5116  | -0.1649 | 0    | 33    | 16      | 1    | R.FPYVALSK.T                                                                                                                   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 41                                                                                                       | 517.1760  | 1032.3375 | 1032.5604 | -0.2229 | 0    | 70    | 0.0036  | 3    | R.GSSIFGLAPGK.A                                                                                                                |  |
| _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <u>62</u>                                                                                                | 564.6804  | 1127.3463 | 1127.5764 | -0.2301 | 0    | 10    | 2.8e+03 | 6    | R.GFFLFVEGGR.I                                                                                                                 |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u>65</u>                                                                                                | 567.6567  | 1133.2987 | 1133.5499 | -0.2511 | 0    | 44    | 1.1     | 1    | R.GREVISVHIR.A + Oxidation (M)                                                                                                 |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100                                                                                                      | 653 2101  | 1226.3836 | 1226.6329 | -0.2473 |      | (87)  | 5 70-05 | 1    | K CHEATLEI SANAD F                                                                                                             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 124                                                                                                      | 710.2235  | 1418.4324 | 1418.7154 | -0.2829 |      | 95    | 5.76-05 | ÷.   | K.GNFOTIGLSAMAR.F + Acetyl (N-term): $[+72,0211]$ at N-term Gl                                                                 |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12.6                                                                                                     | 726.1806  | 1450.3465 | 1450.6477 | -0.3011 | 0    | 73    | 0.0012  | - 1  | R. NWYSDADVPASAR. 0                                                                                                            |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 133                                                                                                      | 499.1349  | 1494.3828 | 1494.6694 | -0.2866 | 0    | 92    |         | 1    | L.DPSLMEMTEAALR.L + 2 Oxidation (M)                                                                                            |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 145                                                                                                      | 526.1538  | 1575.4396 | 1575.7814 | -0.3418 | 0    | (61)  |         | 1    | R.ALTETINEDDAIER.A + [-48.0000 at F8]                                                                                          |  |
| <b>v</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 156                                                                                                      | 820.7283  | 1639.4420 | 1639.7763 | -0.3343 | 0    | 97    | 5.1e-06 | 1    | R.ALTETIMFDDAIER.A + Oxidation (M)                                                                                             |  |
| <b>V</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 165                                                                                                      | 841.2310  | 1680.4474 | 1680.8029 | -0.3554 | 0    | (75)  |         | 1    | R_ALTETIMFDDAIER.A + Oxidation (M); [+41.0266 at N-term A]                                                                     |  |
| <b>V</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 170                                                                                                      | 864.2888  | 1726.5629 | 1726.9294 | -0.3664 | 0    | 44    | 0.9     | 1    | K.AYTVLLYGNGPGYVLK.D                                                                                                           |  |
| <b>V</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 176                                                                                                      | 879.2425  | 1756.4705 | 1756.8420 | -0.3715 | 0    | 83    |         | 1    | G.IIPVEEENPDFWNR.E                                                                                                             |  |
| _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <u>204</u>                                                                                               | 956.2437  | 1910.4729 | 1910.8601 | -0.3872 | 0    | 29    | 28      | 3    | R.DSTLDPSLMEMTEAALR.L + 2 Oxidation (M)                                                                                        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 208                                                                                                      | 975.8100  | 1949.6055 | 1950.0245 | -0.4190 | 0    | 85    | 6.6e-05 | 1    | K.NLIIFLGDGMGVSTVTAAR.I + Oxidation (M)                                                                                        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 209                                                                                                      | 976.2340  | 1950.4534 | 1950.8555 | -0.4021 | 0    | (27)  | 42      | 1    | K.DGARPDVTESESGSPEYR.Q                                                                                                         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 211                                                                                                      | 656.1752  | 1965.5039 | 1964.8712 | 0.6327  | 0    | (72)  |         | 1    | K.DUARPDVIESESUSPEIR.U + $[+14.0157]$ at 18]<br>K.W.TIELEDCHCHCSTUTAAR I + Oxidat <sup>(h)</sup> (M) + [+41.0266] at N-term NI |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 216                                                                                                      | 1001.2027 | 2000.3908 | 2000.8058 | -0.4150 | 0    | (65)  | 0.0069  | 1    | R.MCTPDPEVPDDVSOGGTR L + Ovidatio                                                                                              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 217                                                                                                      | 667.8046  | 2000.3919 | 2000.8058 | -0.4139 | 0    | 70    | 0.002   | 1    | R.MGTPDPEYPDDYSQGGTR.L + Oxidatic                                                                                              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 218                                                                                                      | 670.1561  | 2007.4466 | 2007.8770 | -0.4304 | 0    | 75    |         | 1    | K.DGARPDVTESESGSPEYR.Q + [+57.02] Thr->&sn (T) [+12.9952]                                                                      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 222                                                                                                      | 681.8205  | 2042.4397 | 2041.8324 | 0.6073  | 0    | (61)  |         | 1    | R.MGTPDPEYPDDYSQGGTR.L + Acetyl Methylamine (T) [+13.0316] .9840 at E7]                                                        |  |
| <b>V</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 252                                                                                                      | 784.5440  | 2350.6103 | 2351.1030 | -0.4927 | 0    | (69)  |         | 1    | R_QQSAVPLDEETHAGEDVAVFAR.G + [-1]                                                                                              |  |
| <b>v</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 253                                                                                                      | 790.2187  | 2367.6341 | 2368.1295 | -0.4954 | 0    | 94    | 7.6e-06 | 1    | R.QQSAVPLDEETHAGEDVAVFAR.G                                                                                                     |  |
| <b>V</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 260                                                                                                      | 809.2208  | 2424.6406 | 2425.1510 | -0.5104 | 0    | (66)  |         | 1    | R_QQSAVPLDEETHAGEDVAVFAR.G + [+57.0215 at N-term Q]                                                                            |  |
| <b>V</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <u>275</u>                                                                                               | 920.5878  | 2758.7415 | 2759.3582 | -0.6167 | 0    | 90    |         | 1    | R_QEGCQDIATQLISNMDIDVILGGGR.K + Acetyl (N-term); Oxidation (M); [-0.9476 t ]                                                   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                          |           |           |           |         |      |       |         |      |                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                          |           |           |           |         |      |       |         |      |                                                                                                                                |  |
| 🛃 IRAADI./UD 2/ANTI/DRV/ 37LAIIDIUS 1/SIL/UD SIAAAS1709 8/AAAS8616                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                          |           |           |           |         |      |       |         |      |                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MATRIX                                                                                                   |           |           |           |         |      |       |         |      |                                                                                                                                |  |
| M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A:                                                                                                       | SUU       | : M       | odific    | ation   | S    |       |         |      | © 2007-2012 Matrix Science                                                                                                     |  |
| Join Science                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                          |           |           |           |         |      |       |         |      |                                                                                                                                |  |

As is methylation ay T8 for query 211

| 🔋 Peptide Summary Report (Error tolerant example) - Microsoft Internet Explorer 🔹 💽 🔀 |                                                                                                       |           |           |           |         |      |       |         |      |                                                                          |  |
|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------|-----------|-----------|---------|------|-------|---------|------|--------------------------------------------------------------------------|--|
| File Edit View Favorites Tools Help                                                   |                                                                                                       |           |           |           |         |      |       |         |      |                                                                          |  |
| 😮 Back + 💿 - 🖹 🖉 🏠 🔎 Search 🔆 Favorites 🤣 🔗 - 😓 🛱 * Povernaris 🥻 🔺 🛠                  |                                                                                                       |           |           |           |         |      |       |         |      |                                                                          |  |
| Address                                                                               | Address 👔 http://www.matrixscience.com/cgi/master_results.pl/file=jdata/2007/0626/FoGories.dat 👻 🔁 Go |           |           |           |         |      |       |         |      |                                                                          |  |
|                                                                                       |                                                                                                       |           |           |           |         |      |       |         |      |                                                                          |  |
| Selec                                                                                 | Select All Select None Search Selected Trior tolerant                                                 |           |           |           |         |      |       |         |      |                                                                          |  |
| 1.                                                                                    | 1. AAA51708 Mass: 56371 Score: 782 Oueries matched: 27 emPAI: 0.78                                    |           |           |           |         |      |       |         |      |                                                                          |  |
| HUMLEPA NDI - Homo sapiens                                                            |                                                                                                       |           |           |           |         |      |       |         |      |                                                                          |  |
| Check to include this hit in error tolerant search                                    |                                                                                                       |           |           |           |         |      |       |         |      |                                                                          |  |
|                                                                                       |                                                                                                       |           |           |           |         |      |       |         |      |                                                                          |  |
|                                                                                       | Query                                                                                                 | Observed  | Mr(expt)  | Mr(calc)  | Delta   | Miss | Score | Expect  | Rank | Peptide                                                                  |  |
|                                                                                       | 41                                                                                                    | 462.6007  | 923.3466  | 923.5116  | -0.2229 | 0    | 33    | 0.0036  | 3    | R. FFIVALSA. I<br>D. GSSTEGLADEK A                                       |  |
|                                                                                       | 62                                                                                                    | 564.6804  | 1127.3463 | 1127.5764 | -0.2301 | 0    | 10    | 2.8e+03 | 6    | R. GFFLFVEGGR. I                                                         |  |
|                                                                                       | 65                                                                                                    | 567.6567  | 1133.2987 | 1133.5499 | -0.2511 | 0    | 44    | 1.1     | 1    | R.GNEVISVMNR.A + Oxidation (M)                                           |  |
| _                                                                                     | 86                                                                                                    | 614.2001  | 1226.3856 | 1226.6329 | -0.2473 | 0    | 28    | 41      | 2    | K.LGPEIPLAMDR.F + Oxidation (M)                                          |  |
|                                                                                       | 100                                                                                                   | 653.2101  | 1304.4057 | 1304.6837 | -0.2780 | 0    | (87)  | 5.7e-05 | 1    | K. GNFQTIGLSAAAR.F                                                       |  |
|                                                                                       | 124                                                                                                   | 710.2235  | 1418.4324 | 1418.7154 | -0.2829 | 0    | 95    |         | 1    | K. <u>GNFQTIGLSAAAR.F</u> + Acetyl (N-term); [+72.0211 at N-term 6]      |  |
|                                                                                       | 126                                                                                                   | 726.1806  | 1450.3465 | 1450.6477 | -0.3011 | 0    | 73    | 0.0012  | 1    | R. NWYSDADVPASAR. Q                                                      |  |
|                                                                                       | <u>133</u>                                                                                            | 499.1349  | 1494.3828 | 1494.6694 | -0.2866 | 0    | 92    |         | 1    | L.DPSLMEMTEAALR.L + 2 Oxidation (M)                                      |  |
|                                                                                       | 145                                                                                                   | 526.1538  | 1575.4396 | 1575.7814 | -0.3418 | 0    | (61)  |         | 1    | R.ALTETIMEDDAIER.A + [-48.0000 at F8]                                    |  |
|                                                                                       | 156                                                                                                   | 820.7283  | 1639.4420 | 1639.7763 | -0.3343 | 0    | 97    | 5.1e-06 | 1    | R.ALTETINFDDAIER.A + Oxidati_h (N)                                       |  |
|                                                                                       | <u>165</u>                                                                                            | 841.2310  | 1680.4474 | 1680.8029 | -0.3554 | 0    | (75)  |         | 1    | R_ALTETIMFDDAIER.A + Oxidati Possible Assignments: m A]                  |  |
|                                                                                       | 170                                                                                                   | 864.2888  | 1726.3629 | 1726.9294 | -0.3554 |      | 44    | 0.9     | 1    | C. TIMERENDERAD F. Phe->Val (F) [-48.0000]                               |  |
|                                                                                       | 204                                                                                                   | 879.2423  | 1910 4729 | 1910 8601 | -0.3/15 | 0    | 20    | 28      | 3    | D DETUDES MENTERALD I + 2 0                                              |  |
|                                                                                       | 208                                                                                                   | 975.8100  | 1949.6055 | 1950.0245 | -0.4190 | 0    | 85    | 6.66-05 | 1    | K.NLITELEDEMENSTUTAAR.I + Oxidation (M)                                  |  |
|                                                                                       | 209                                                                                                   | 976.2340  | 1950.4534 | 1950.8555 | -0.4021 | 0    | (27)  | 42      | 1    | K.DGARPDVTESESGSPEYR.0                                                   |  |
|                                                                                       | 211                                                                                                   | 656.1752  | 1965.5039 | 1964.8712 | 0.6327  | 0    | (72)  |         | 1    | K.DGARPDVTESESGSPEYR.Q + [+14.0157 at T8]                                |  |
|                                                                                       | 213                                                                                                   | 664.5518  | 1990.6336 | 1991.0510 | -0.4174 | 0    | (58)  |         | 4    | K_NLIIFLGDGMGVSTVTAAR.I + Oxidation (M); [+41.0266 at N-term N]          |  |
|                                                                                       | 216                                                                                                   | 1001.2027 | 2000.3908 | 2000.8058 | -0.4150 | 0    | (65)  | 0.0069  | 1    | R.MGTPDPEYPDDYSQGGTR.L + Oxidation (M)                                   |  |
|                                                                                       | 217                                                                                                   | 667.8046  | 2000.3919 | 2000.8058 | -0.4139 | 0    | 70    | 0.002   | 1    | R.MGTPDPEYPDDYSQGGTR.L + Oxidation (M)                                   |  |
|                                                                                       | 218                                                                                                   | 670.1561  | 2007.4466 | 2007.8770 | -0.4304 | 0    | 75    |         | 1    | K_DGARPDVTESESGSPEYR.Q + [+57.0215 at N-term D]                          |  |
|                                                                                       | 222                                                                                                   | 681.8205  | 2042.4397 | 2041.8324 | 0.6073  | 0    | (61)  |         | 1    | R.MGTPDPEYPDDYSQGGTR.L + Acetyl (N-term); Oxidation (M); [-0.9840 at E7] |  |
|                                                                                       | 252                                                                                                   | 784.5440  | 2350.6103 | 2351.1030 | -0.4927 | 0    | (69)  |         | 1    | R_QQSAVPLDEETHAGEDVAVFAR.G + [-17.0265 at N-term Q]                      |  |
|                                                                                       | 253                                                                                                   | 790.2187  | 2367.6341 | 2368.1295 | -0.4954 |      | 94    | 7.66-06 | 1    | R. QUSAVPLDEETHAGEDVAVPAR. G                                             |  |
|                                                                                       | 200                                                                                                   | 920.5878  | 2424.0400 | 2425.1510 | -0.5104 | 0    | (00)  |         | 1    | $R_{\rm v}$ (VSAVPLDEE INAGEDVAVPAR. 6 + (+37.0215) at N-term ()         |  |
|                                                                                       | ,                                                                                                     | 52010010  |           | 210510002 | 010101  |      |       |         | -    | A A A A A A A A A A A A A A A A A A A                                    |  |
| <                                                                                     | <x< td=""></x<>                                                                                       |           |           |           |         |      |       |         |      |                                                                          |  |
| 2) 1.4AA51708 2.4A4509647 3:CA15103 4:512076 5:AAA51709 8:AAA68616                    |                                                                                                       |           |           |           |         |      |       |         |      |                                                                          |  |
| N                                                                                     | MASCOT : Modifications © 2007-2012 Matrix Science                                                     |           |           |           |         |      |       |         |      |                                                                          |  |

In other cases, the match may be good, but the assignment is not believable. Query 145 is listed with a substitution at F8 causing a loss of 48 Da. This seems unlikely because we have 2 other matches to the same peptide without any substitution. What else could it be? Well, notice that the other two matches are both oxidised at M7. If we suppose this peptide is also oxidised, then the mass shift becomes -64, which is a well-known loss for oxidised methionine, (loss of methanesulfenic acid). This would seem a much more likely explanation for this match.

It is important to understand that the error tolerant search finds new matches by introducing mass shifts at different positions in the database sequences. The match may be very strong, but figuring out a credible assignment can require a bit of detective work.

| Peptide Summary Report (Error tolerant example) - Microsoft Internet Explorer                                       |                                                                                                   |  |  |  |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
| File Edit Wew Favorites Tools Help                                                                                  |                                                                                                   |  |  |  |  |  |  |  |  |  |
| 🕝 Back · 🕘 · 🙀 🖉 🏠 🔎 Search 🐈 Favorites 🤣 🔗 - 🌺 🧖 · Powermarks 🐲 🚸                                                  |                                                                                                   |  |  |  |  |  |  |  |  |  |
| Address 🕘 http://www.matrixscience.com/cgi/master_results.pl?file=/data/20070626/FoGcrie5.dat                       | 🛩 🛃 Go                                                                                            |  |  |  |  |  |  |  |  |  |
| 11 INTO Mage: 22070 Score: 454 Querieg metched: 16 amDAT: 1.42                                                      |                                                                                                   |  |  |  |  |  |  |  |  |  |
| trypsin (EC 3.4.21.4) (isopropylphosphorylated) - bovine                                                            |                                                                                                   |  |  |  |  |  |  |  |  |  |
| Check to include this hit in error tolerant search                                                                  |                                                                                                   |  |  |  |  |  |  |  |  |  |
| Query Observed Mr(expt) Mr(calc) Delta Miss Score Expect Rank                                                       | Peptide                                                                                           |  |  |  |  |  |  |  |  |  |
| ✓ <u>71</u> 577.1685 1152.3225 1152.5663 -0.2438 0 87 4.6e-05 1                                                     | K.SSGTSYPDVLK.C                                                                                   |  |  |  |  |  |  |  |  |  |
|                                                                                                                     | K.VCNYVSWIK.Q                                                                                     |  |  |  |  |  |  |  |  |  |
| ✓ <u>78</u> 598.1756 1194.3366 1194.5768 -0.2402 0 (69) 1                                                           | K. <u>SSGTSYPDVLK.C + [+42.0106</u> at N-term S]                                                  |  |  |  |  |  |  |  |  |  |
| <b>83</b> 606.1832 1210.3559 1210.5717 -0.2158 0 (61) 1                                                             | $K_{SSGTSYPPVLK,C} + [+38.0055] \text{ at } N-\text{term S}]$                                     |  |  |  |  |  |  |  |  |  |
| V <u>54</u> 040.1270 1270.2411 1270.4023 -0.2219 0 (07) 1<br>132 745.7224 1489.4302 1489.7348 -0.3046 0 72 0.0017 1 | K.I.OGTUSWESGCAOK N                                                                               |  |  |  |  |  |  |  |  |  |
| ▼ 229 1081.7685 2161.5224 2162.0491 -0.5267 0 156 5.1e-12 1                                                         | R.LGEDNINVVEGNEOFISASK.S                                                                          |  |  |  |  |  |  |  |  |  |
| ✓ 230 721.5398 2161.5976 2162.0491 -0.4515 0 (94) 8.2e-06 1                                                         | R.LGEDNINVVEGNEQFISASK.S                                                                          |  |  |  |  |  |  |  |  |  |
| V 231 721.8998 2162.6775 2162.0491 0.6284 0 (42) 1.5 1                                                              | R.LGEDNINVVEGNEQFISASK.S                                                                          |  |  |  |  |  |  |  |  |  |
|                                                                                                                     | R.LGEDNINVVEGNEQFISASK.S + [+23.9748 at N-term L]                                                 |  |  |  |  |  |  |  |  |  |
| ✓ 234 1094.8114 2187.6082 2188.0284 -0.4201 0 (97) 1                                                                | R.LGEDNINVVEGNEQFISASK.S + Acetyl (N-term); [-16.0313 at N-term L]                                |  |  |  |  |  |  |  |  |  |
| ✓ 236 1102.8029 2203.5912 2204.0961 -0.5048 0 (102) 1                                                               | R.LGEDNINVVEGNEQFISASK.S + [+42.0470 at G2]                                                       |  |  |  |  |  |  |  |  |  |
| 735.3400 2203.3903 2204.0397 -0.4614 0 (67) 0.0043 1 7 Ton scoring mentide matches to query 236                     | R_LOEDRINVVEGREGFISASK.S + ACCCY1 (R-CCIM)<br>B I GEDNINRVEGREGFISASK S + [+57, 0215 at C-term K] |  |  |  |  |  |  |  |  |  |
| 2 142: Sum of 8 scans in range 2405 (rt=2102.48) to 2426 (rt=2116.32)                                               | R.LGEDNINVVEGNEOFISASK.S + [+57.0215 at C-term K]                                                 |  |  |  |  |  |  |  |  |  |
|                                                                                                                     | K.SIVHPSYDSNTLNNDDMLIK.L                                                                          |  |  |  |  |  |  |  |  |  |
| 102.4 -0.5048 11+ 1NTP R.LGEDNINVVEGNEOFISASK.S                                                                     |                                                                                                   |  |  |  |  |  |  |  |  |  |
| 12 TP 100.8 1.7e-06 -0.4684 11+ 1NTP R_LGEDNINVVEGNEQFISASK.S                                                       | 7                                                                                                 |  |  |  |  |  |  |  |  |  |
| 12. 17.0 4e+02 -0.5677 R_VGDPFNPKVTVGPVNNPGQVK.Y                                                                    |                                                                                                   |  |  |  |  |  |  |  |  |  |
| Che 13.0 1e+03 0.5940 K.GGARVGWIVVCHGEGMMEDK.S                                                                      |                                                                                                   |  |  |  |  |  |  |  |  |  |
| 12.9 1e+03 -0.4395 K_VLSCDYVDQSSNLTIFSSK.E                                                                          |                                                                                                   |  |  |  |  |  |  |  |  |  |
| Que 12.8 1.12+03 0.3588 R.DPNSPKVSAVSAIVNKGLPLK.A<br>12.3 1.2e+03 -0.5412 K.TPTGPNASSSAVPSSKYTVAIK.D                | Peptide                                                                                           |  |  |  |  |  |  |  |  |  |
| ✓ 11.9 1.3e+03 0.4783 M.RVLTLNDKDLFMAHDVMK.T                                                                        | K. SIVHPSYNSN. T                                                                                  |  |  |  |  |  |  |  |  |  |
| 11.8 1.4e+03 0.2933 R_YPQLPIVGLVPALKPAISASK.T<br>11.5 1.4e+03 -0.4837 R.OAFVKPEDIDVIXAHGSGTK.O                      | K.SSGTSYPDVLK.C                                                                                   |  |  |  |  |  |  |  |  |  |
|                                                                                                                     | K.SSGTSYPDVLK.C + [+42.0106 at N-term S]                                                          |  |  |  |  |  |  |  |  |  |
| <u>83</u> 606.1852 1210.3559 1210.5717 -0.2158 0 (61) 1                                                             | K_SSGTSYPDVLK.C + [+58.0055 at N-term S]                                                          |  |  |  |  |  |  |  |  |  |
| <u>94</u> 640.1278 1278.2411 1278.4629 -0.2219 0 (67) 1                                                             | K.SSGTSYPDVLK.C + [+125.8966 at Y6]                                                               |  |  |  |  |  |  |  |  |  |
| <u>132</u> 745.7224 1489.4302 1489.7348 -0.3046 0 72 0.0017 1                                                       | K.LQGIVSWGSGCAQK.N                                                                                |  |  |  |  |  |  |  |  |  |
| 229 1081.7685 2161.5224 2162.0491 -0.5267 0 156 5.1e-12 1                                                           | K. LOEDNINVVEGNEUP ISASK. S                                                                       |  |  |  |  |  |  |  |  |  |
| 11:INTP 12:TRBOTR                                                                                                   | S Diternet                                                                                        |  |  |  |  |  |  |  |  |  |
|                                                                                                                     |                                                                                                   |  |  |  |  |  |  |  |  |  |
| MASCOT : Modifications                                                                                              | © 2007-2012 Matrix Science                                                                        |  |  |  |  |  |  |  |  |  |
|                                                                                                                     | SCIENCE                                                                                           |  |  |  |  |  |  |  |  |  |

You should also look at the other yellow pop-up when trying to decide whether to accept a match or not. In this example, the error tolerant search was able to get a slightly higher score by shifting a modification of +42 Da from the amino terminus to the adjacent glycine. However, as score increase of 2 in 100 is negligible. Much more believeable to take the original match from the first pass search, which can be explained as N-terminal acetylation.



In summary, an error tolerant search

•Can successfully locate mass differences corresponding to a single unsuspected modification or a single SNP per peptide

•User must decide on best explanation for the observed differences

•Limited to proteins which have at least one good peptide match ... not very useful for (say) MHC peptides