

You will remember from the introduction, that sequence queries are searches where mass information is combined with amino acid sequence or composition information

The best known example is a sequence tag search, where a few residues of amino acid sequence are interpreted from the MS/MS spectrum.

You can enter sequence tags, and other types of query, into the sequence query form.

Remember that all the search parameters, including enzyme specificity, modifications, and precursor charge, still apply to this type of search.

Mascot will look for a match between the tag and the ion series specified by the instrument type. Note that Mascot will only try to match the tag against ion series formed by a single backbone cleavage, and maybe a neutral loss, like y or b^* or y^{++} . It won't try to match against side chain cleavage fragments, like d, v, w or internal fragments.

Unless you have high energy fragmentation, and are able to distinguish L from I by side chain cleavage fragments, then this tag is wrong. It should be I or L.

Ambiguity in a tag is fine as long as it is recognised and spelt out. Most times, you won't know whether a residue is Q or K. F is almost identical to oxidised M. If the peaks are weak, are you sure you have a mass difference of R, or could it be VG and the intermediate peak is missing?

If the sequence is in the database, it is easier and safer to perform an MS/MS search of the peak list. In this sense, the standard sequence tag is obsolete.

The error tolerant tag, which can find a match when there is an unsuspected modification or a small difference in the sequence, is very powerful and very useful.

Imagine we had an unmodified peptide of MH+ 1314.7 and we interpreted a tag of TISP in the b+ series between peaks at 614.3 and 911.5.

What happens if there is a modification or SNP that increases mass by 100 Da?

If the mod is on the N-term side of the tag, all the masses shift up by 100. However, if it is on the C-term side, only the peptide mass changes.

If the tag was in the y ion series, the reverse would be observed

The error tolerant tag allows for this. In effect, it allows the peptide mass to vary and allows the tag to float. However, the tag must stay attached to one end or the other. Either both fragment ion masses are unchanged or both fragment ion masses shift by the same amount as the precursor.

This causes a huge loss of specificity, so we cannot allow etag searches with very wide peptide mass tolerance (> 1% or > 10 Da) or with no enzyme specificity. The enzyme specificity in an etag search is never fully specific, in any case, because one end of the peptide can just extend until it finds a cleavage point.

Tags can be entered with the high mass fragment on the left or the right. These two tags are identical

Mascot allows multiple tags in a single query. That is, you can call multiple tags from a single MS/MS spectrum. Tags are scored probabilistically. If one tag is wrong, you can still get a good match from the tags that are correct.

If one tag in a query is an etag than all the tags for that query are treated as etags, (not all tags in the search, just in the query)

Finally, you cannot mix ions qualifiers with tag or etag qualifiers. It would just be too complicated.

A lot of people call tags by inspection, using a calculator or a table of mass values. An alternative is to use Mascot Distiller. Here's how it works

I'll maximise the window, so that we can see what's happening more clearly

Choose a likely looking peak, such as this one at 987, right click the label, and choose 'Start sequence tag'

Distances to nearby peaks that correspond to amino acid residue masses are labelled. You have to choose one and click on the arrow head to select it. To keep things simple, I'm going to choose the most intense peak each time. In this case, it is the peak at 801, giving us a tryptophan

Then the lower case i for leucine or isoleucine

Zoom in to get a clearer view

Let's try another i

Only one option, q for glutamine of lysine

Complicated. Maybe the F for phenylalanine

Then a threonine

And another leucine or isoleucine. This takes us to the lowest mass peak of the spectrum. We then see a choice of residues to connect our tag to the terminus of the peptide. This is because the final mass difference depends on which ions series we happen to be looking at, which is still unknown, and there are several possibilities that fit in this case. So, we'll stop at the leucine / isoleucine

Restore the other windows and we can see our new sequence tag on the peak lists tree. But, is it correct? Lets see whether we can find a match for this spectrum in the database.

If we right click the peak list and perform a Mascot search

We get a good match with a score of 71. Compare the two sequences and we can see that we didn't do very well. We were in y ions, so the two sequences are running in opposite directions. We have LLQ correct, but not much else. At the beginning, where we chose W for the gap between 801 and 987

We can see from the database sequence that one of the small peaks in between was actually a y ion, making the sequence EG, not W. Calling a correct sequence tag is not nearly as easy as you might expect.

So, an alternative is to automate the process entirely by using the de novo algorithm. Here's a nice spectrum where the Mascot database search has failed to find a match If we right click the peak list and choose de novo ...

We get a reasonably high scoring solution, but with a fair amount of uncertainty

Right click the solution and choose Mascot search from the context menu. Note that we have already toggled the tag type to error tolerant

Additional and additional and additional additin additional additin additional additional additional additional		lascot Search (t61-j	с)					
ILTURDUCTIASDER(SH), Your name Enzyme Enzyme Final ILTURDUCTIASDER(SH), Search title (Raft - 8) Database(3) MSJPL_human Allow up to 2 missed clearages Vour name Rest - 8 Database(3) MSJPL_human Allow up to 2 missed clearages Vour name Rest - 8 Database(3) MSJPL_human Allow up to 2 missed clearages Vour name Fibed Carbamidomethyl (C) Acetyl (Protein N-Nerm) Acetyl (Protein N-Nerm) MSJPS/F01[K0], Fibed Carbamidomethyl (C) Acetyl (Protein N-Nerm) Acetyl (Nerm) Modifications Bisplay all modifications Bisplay all modifications Bisplay all modifications Bisplay all modifications WorkDorgELER(N) (VBS) (VBS) (Fo) (KS) Variable Display all modifications Bisplay all modifications Bisplay all modifications WorkDorgELER(N) (VBS) (VBS) (Fo) (KS) Variable Display all modifications Bisplay (Nerm) (C) Peptide charge WorkDorgELER(N) (VBS) (VBS) (KS) (KS) Formation of 9 scans in range 2217 (rt=22.8655, f=2, i=520) to Carbacymethyl (C) Peptide charge Formation of 9 scans in range 2217 (rt=22.8655, f=2, i=520) to Carbacymethyl (C) WithESTORER(R), Acetyl (KS) Formation (KA)	LASQTAILLRGKHK(3+), LIINFTENPANTR(3+), 9	MASCOT	Sequence Query					
International State Search title Fait - 9 Database(s) MSIP_munan Enzyme Trypsin/P Affect - 8 Database(s) MSIP_munan Allow up to 2 missed classages With Digname - File Named Scass Quantitation None Image: State - 8 Demore Solutions (Trypsin/P Allow up to 2 missed classages Quantitation None With Digname - File Allow up to 2 missed classages Quantitation None With Digname - File Allow up to 2 missed classages Quantitation None With Digname - File Allow up to 2 missed classages Quantitation None With Digname - File All entries Imadifications Accepti (Arcem) Accepti (Arcem) With Digname - File Missing (Vite)	LILVDPLGGIPASDR(3+),	Your name		Email				
ILLITING VIEW STATURE (19); ILLITING VIEW STATURE (19); INC 174.666, 2+ 1471 Sca Named Scale Person Solutions (Trype - C-(18) (700 STR (19) (16) (17); INC 174.666, 2+ 1471 Sca Named Scale INC 174.667 (17) Scale INC 174.676 (17) Scale INC 174.676 (17) Scale INC 174.776 (17) Sca	- J IIETGGNDVYVAER(3+), 6	Search title	Raft - 8					
Intromation Intromation Stated Scans Quantitation Note of State State Previous State State Note of State State State Previous State S	LLKTDNGPAYTSQK(3+),	Database(s)	MSIPI_human	Enzyme	Trypsin/P			
Demote Source Teach Results SwistStroke Quantitation Non- D Texponsity All entries Carbamidometryl (C) Accetyl (Netern) Accetyl (Netern) Accetyl (Netern) March (Strike) March (Strike) Display all modifications Accetyl (Netern) Accetyl (Netern) March (Strike) March (Strike) Display all modifications Accetyl (Netern) Accetyl (Netern) March (Strike) March (Strike) Display all modifications Biotin (Netern) Accetyl (Netern) March (Strike) March (Strike) Display all modifications Biotin (Netern) Accetyl (Netern) March (Strike) March (Strike) Display (Strike) Accetyl (Netern) Biotin (Netern) March (Strike) March (Strike) Display (Strike) Peptide tal. ± 0.600 Pa # strike (Strike) Peptide tal. ± 0.600 Pa # strike)	- IIQVHFSPLFGDGR(3+),		MSIPI_mouse NCBInr	Allow up to	2 missed cleavages			~~~
Perior Saturbane (Trype) ••• C-TRE(TyDADSYTED[167) ••• C-TRE(TYDADSYTED[167) <	Summed Scans		SwissProt Trembl	Quantitation	None	•	0	Sec
First Carbamidomethyl (C) First Carbamyl (N) First Carbamyl (N) First Carbamyl (N) First Carbamyl (N) Carbamyl (N)	- MUNCINDADSVIPCIUS	Тахороту	All entries					
www.ut/Bio/TWD.SYL01/RG With Statt Search Reserved. With Statt Search Reserv	- G-[NG]VDADSY[PG][KG]	Fixed						
Image: Start Search Image: Search S	- ** -M[NG]V[WD]SY[PG][KG	modifications	Carbamidomethyl (C)	>	Acetyl (K) Acetyl (N-term)	<u></u>		
Image: Section of the section of th	T[NG]VDADSY[PG][KG]			<	Acetyl (Protein N-term)	<u></u>		
modifications modifications	-% -[NG][NG]VDADS[Gf]i[Amidated (C-term) Amidated (Protein C-term)			
Waribable Ovidation (M) Subort (J, term) Carbanyi (K) Carbanyi (K) Marcol Seach Results Peptide tol. ± 0.600 Without DLARK(2+), Peptide tol. ± 0.600 Wi	M[RN]WDSY[PG][KG],		Display all modifications	-	Ammonia-loss (N-term C)			
modifications	G-INGIVINDISYIPGIIKG	Variable	Oxidation (M)		Biotin (N-term)			
We C-VEDAUTY (VR); 63 WE CENTION (VR); 63 VEXTENDIVING (*); 10 VEXTENDIVING (*); 10 VEXTENDIVING (*); 10 VEXTENDIVING (*); 10 VEXTENDIVING (*); 11 VEXTENDIVING (*); 12 VEXTENDIVING (*); 13 VEXTENDIVING (*); 14 VEXTENDIVING (*); 15 VEXTENDIVING (*); 15 VEXTENDIVING (*); 15 VEXTENDIVING (*); 16 VEXTENDIVING (*); 16 VEXTENDIVING (*); 17	- GNGT[NG]VEGDSY[PG][K	modifications		>	Carbamyl (K)			
Maccol: Secult Results Peptide tol. ± 0.600 Da #sic T MS/MS tol. ± 0.300 Da # VKLFOEDLIARK(2+), F VKLFOEDLIARK(2+), F ELIMINATION (2+), F EXPLOSIVE MARK (2+), F <	G-YSDADV[YYR], 63			<	Carboxymethyl (C)	~		
VEXTERUIT/UNR(4), IA Peptide charge M Monolosotopic Average VYMMUNSUBALIN(2), INTER-1473 30072, Pe2ASA Peptide charge M Monolosotopic Average Peptide charge M Our Peptide charge Monolosotopic Average Peptide charge M Monolosotopic Average Monolosotopic Average Monolosotopic Report top Monolosotopic Report top <th>Hascot Search Results</th> <th>Pentide tol +</th> <th>0.600 Da 🗐 # 110 0</th> <th>MS/MS tol +</th> <th>0.300 Da 💌</th> <th></th> <th></th> <th></th>	Hascot Search Results	Pentide tol +	0.600 Da 🗐 # 110 0	MS/MS tol +	0.300 Da 💌			
Peptide charge Mr Monoisobacic & Average C UNTROPORTING TANK (2), F FECINI IONS	VEEYENUIVVNR(2+), 10	replace con 1						
FixTPDOPELTER: (24), 6 EEGIN IONS FLIFTANDELTVAND(24), 1 EEGIN IONS OGATALIPTEVIAL(24), 1 EEGIN IONS OGATALIPTEVIAL(24), 1 EEGIN IONS DECON TOURS EEGIN IONS TILIDERTIGEN, (24), 2 Instrument, ESI-TRAP TILIDERTIGEN, (24), 17 Copyright © 2000 Matrix Science Ltd. All Rights Reserved.	VVNVNGVSLDALYK(2+),	Peptide charge	Mr 💌	Monoisotopic	• Average C			
KALKGTMEETIXX (24), 2 Instrument [ESI-TRAD W/K SUBSTRIX (24), 2 Decoy W/K SUBSTRIX (24), 2 Decoy W/K SUBSTRIX (24), 45 Search Results TILDUSTRI (24), 45 Search Results TILDUSTRI (24), 45 Copyright © 2009 Matrix Science Ltd. All Rights Reserved. Cancel Copyright © 2009 Matrix Science Ltd. All Rights Reserved.	 KAVEDGHPELEFK(2+), 6 ELMFANGELVAAR(2+), GGATALHPYDEVLR(2+), EEVLEGEPPDAR(2+), 4 DLENKEKTGGFDR(2+), 4 	Query	BEGIN IONS TITLE=147: Sum of 9 scans in 2241 (rt=33.0972, f=2, i=528) PEPMASS=1508.3654 CHARGE=1+ FTAG=501.20154.VDA.786.283	range 2217 (rt=3:	2.8655, f=2, i=520) to			
Wold Risk Trik (44), 2 Decoy C Report top AUTO hits Water Scans Start Search Reset Form TLIDUTE (24), 45 Start Search Reset Form TLIDUTE (24), 17 Copyright © 2008 Matrix Scance Ltd. All Pights Reserved. Decoy C Acquistion Precures: FeekLists Search Copyright © 2008 Matrix Scance Ltd. All Pights Reserved. Decoy C	- KALEGTDMEEIKK(2+), 2	Instrument	ESI-TRAP					
Start Search Reset Form Start Search Reset Form Start Search Reset Form Carcel Carcel Reset Form Reset Form It LINESER(24), 17 Acquistion Precursors PeakLists Sourches Reset It Reserved. It	RRLMTASTAYPIK(2+), 2	Decoy		Report top	AUTO I hits			
Insocs Search Results Insocs Search Results TLDINTT(2+), 45 TLDINTT(2+), 45 TLDINTT(2+), 18 Cepyright © 2008 Matrix Science Ltd. All Rights Reserved. Cancel Acquation Processors PeakLists Searchs Ready Insoch Reserved	Summed Scans		Start Search		Reset Form			
TLIDUITTI(2+), 45 TLIDUITTI(2+), 45 TLIDUITTI(2+), 45 TLIDUITTI(2+), 45 Copyright © 2008 Matrix Science Ltd. All Rights Reserved. Cancel Readults Search: Ready 1078-117-0.294	Hascot Search Results							
Acqueton Precursors PeakLobs Searchest	TLLDIDNTR(2+), 45							
Acqueton Precursors PeakLats Searche	TIIDOVEDK(2+), 45		Copyright @ 2008	Matrix Science Ltd.	All Rights Reserved.		×.	
Acquiston Precursors Peak Lists Searches	- 7 ITLIDNSER(2+), 17					-		and the second
Acquiston Preurors: PeakLists Searchest						_	Cancel	
Ready 1678.417 - 0.284	Acquisition Precursors Peak Lists Searches							1522
	sady						1678	5.417 - 0.284

Distiller populates the query field with the tags taken from the non-ambiguous parts of the de novo solution. We submit the search ...

And back comes the result. Note that the results from this most recent search have replaced the original database search. You can switch back to the previous results by selecting them on the searches tab.

This match looks promising. If we right click and choose to view the full Mascot report in a browser ...

We can see a good illustration of my earlier point about the enzyme being almost semispecific in an etag search. The peptide can just extend until it finds a cleavage point and then hypothesise a modification that causes a loss of mass to bring the peptide mass back into line.

If we click on the hyperlink to see the peptide view ...

🗞 Mascot Search Results: Peptide View - Mozilla Firefox										
Elle	Ele Edit Yew Higtory Bookmarks Iools Help									
<	🔇 🗁 C 🗶 🏠 🗋 http://fel-sc/maccol/cg/opstde_view.pPfle=_idata/20100421/P016234.datopery=10ht=16index=P81JH.MANkpx=16ection=Sbave_three 🟠 = 🚼 = Coopie 🔎									0
🗑 S.	🕞 Sugar 👢 pubwww1 🐛 pubwww1 Status 🗗 Currency Converter 🗋 MS Bugs & FAQ 💶 Twiki 🗋 Family report 😔 2009 "ASHS Fail Wor 🖬 MascottinproveReport									
	Peptide Summary Report (Raft - 6) 👘 Mascot Search Results: Peptide V 💈 🚸									-
{ <u>M</u> { SC	(MATRIX) (SCIENCE) Mascot Search Results									
Pej	ptide Viev	w								
MS/ Four Mat etag	MSMS Fragmentation of NWYSDADVPASAR Found in PPB1_HUMAN , Alkaline phosphatase, placental type OS=Homo sapiens GN=ALPP PE=1 SV=2 Match to Query 1: 1507.358124 from(1508.365400,1+) etag(501.20154,VDA,786.28734) etag(786.28734,DSY,1151.38063) etag(600.28103,DAD,901.30219) etag/742.2814.4DS 521.15782)									11
Title Mon Fix Uns Ion	Title: 147: Sum of 9 scans in range 2217 (rt=32.8655, f=2, i=520) to 2241 (rt=33.0972, f=2, i=528) Monoisotopic mass of neutral peptide Mr(calc): 1450.6477 Fixed modifications: Carbonidomethyl () (opply to specified residues or termini only) Unsuspected modification: 56.7104 Pa, located in the region N-term to W2 Tons Score: 80 Expect: 2-005 (help)									
#	b	b*	ь0	Seq.	у	y*	y ⁰	#		
1	115.0502	98.0237		N				13	3	
2	301.1295	284.1030		w	1337.6121	1320.5855	1319.6015	12	2	
3	464.1928	447.1663		Y	1151.5327	1134.5062	1133.5222	11	L	
4	551.2249	534.1983	533.2143	S	988.4694	971.4429	970.4588	10		
5	666.2518	649.2253	648.2413	D	901.4374	884.4108	883.4268	9		
6	737.2889	720.2624	719.2784	Α	786.4104	769.3839	768.3999	8	3	
7	852.3159	835.2893	834.3053	D	715.3733	698.3468	697.3628	7	7	
8	951.3843	934.3577	933.3737	v	600.3464	583.3198	582.3358	6	5	
9	1048.4371	1031.4105	1030.4265	Р	501.2780	484.2514	483.2674	5	5	
10	1119.4742	1102.4476	1101.4636	Α	404.2252	387.1987	386.2146	4	4	
11	1206.5062	1189.4796	1188.4956	S	333.1881	316.1615	315.1775	3	3	
12	1277.5433	1260.5168	1259.5327	Α	246.1561	229.1295		2		2
×F	ind:		Next 1	Prev	vious 🖉 Highli;	ht al 🔲 Mat	gh case		·	
Done										
									_	
MASCOT : Sequence Queries © 2007-2012 Matrix Science										

The match was obtained by placing a modification delta of +57 Da on the N-term residue. This is almost certainly carbamidomethylation, which can derivatise amino groups if the conditions aren't right. This was why the original database search failed to get a match and this is why the error tolerant tag is so useful

If you want to get as many identifications as possible, as efficiently as possible, you might come up with a strategy similar to this.

Se	eq()									
•Li •M •se	 Like a tag, but without fragment mass information Most likely, from non-MS sequencing, e.g. Edman 1234 seq(n-AC[DHK]) seq(c-HI) seq(*-GF) seq() is not scored probabilistically, it is a filter 									
	Prefix	Meaning	Example							
	b- N->C sequence seq(b-DEFG)									
	у-									
	*_									
	n-	12								
	c-	C terminal sequence	seq(c-FGHI)	~ a.						
MASC	ASCOT : Sequence Queries © 2007-2012 Matrix Science									

Besides tag and etag, Mascot supports a number of other sequence qualifiers. One of these is seq()

Note that seq() is a filter. It must be correct or there will be no match

The other important one is comp(). This would be useful in an ICAT search. Note that comp() is a filter. It must be correct or there will be no match

As always, there is more information in the Mascot help pages. These references are a good starting point if you are interested in learning more about the potential of combining mass and sequence information.