

Modifications are a very important topic in database searching.

In some cases, the main focus of a study is to characterise post translational modifications, which may have biological significance. Phosphorylation would be a good example.

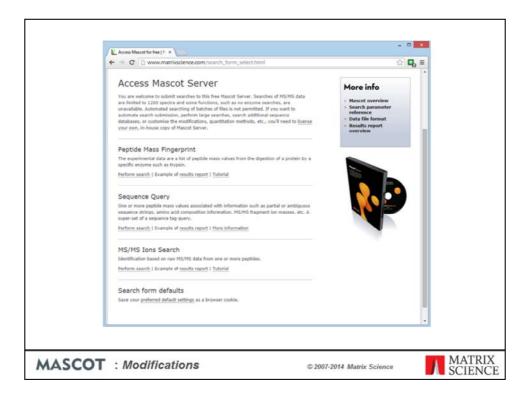
In other cases, the modification may not be of interest in itself, but you need to allow for it in order to get a match. Oxidation during sample preparation would be an example.

And, of course, many methods of quantitation involve modifications containing isotopic labels

Some sequence variants, such as the substitution of one residue by another, are equivalent to modifications, and can be handled in a similar way

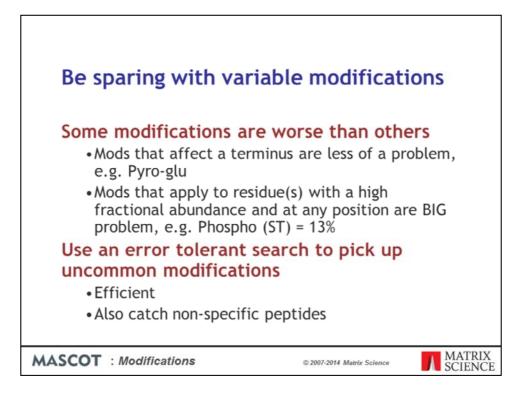
	R insult: 1/	warmer . UP	mod o	rg/nodfications_l	ist.php?gits=14					M.
	-	41/ Jnim				s for mass spectro s unimed Log suf	metry Change password — Advanced search			Halp
	1.9	udd erw		earch for:	Any field	Contains Show a			is found: 531 54 of 27	Page: 20 V
						Sele	ct/Unselect all Delete selected			
R	123	-	8	Accession	PSI-NS Name	Interim name	Description	Monoisotopic	Average	Composition
60	Cepy	View		40	Sulfe	Sulfation	O-Suffenation	79.956815	80.0632	0(3) 5
5.60	Capy	View		21	Phospho	Phospho	Phosphorylation	79.966331	29.9799	H O(3) P
1d	Cepy	View		549		Cys->Trp	Cys->Trp substitution	83.070128	83.0670	H(5) C(8) N S(-1)
to	Cepy	View		211	NEIAA	NEIAA-d0	N-ethyl iodoacetamide-d0	85.052764	05.1045	H(7) ⊂(4) N O
Edi	Cipr	View		747		Malonyl	Malonylation of C and S residues	86.000394	86.0462	H(2) C(3) O(3)
Edi	Capy	View		371	HNVK	ничкае	Hichael addition of hydroxymethylvinyl ketone to cysteine	86.036779	86.0092	H(6) C(4) O(2)
2.0	Серу	Ven		324	DTBP	DTBP	dmethyl 3,3%-dthiobispropionimidate	87.014270	87,3435	H(5) C(2) N 5
5.61	Серу	View		178	DAET	ser_thr_DAET	phosphorylation to amine this!	87.050655	87.1866	H(9) C(4) N O(-1)
Edit	Cepy	View		379	Hypusine	hypusine	hypusine	87.068414	87.1204	H(9) C(4) N O
66	Capy	View	0	126	Thioscyl	DSP	thioacylation of primary amines (N-term	87.998285	88.1203	H(4) C(3) O S
to	Cepy	View	D	105	Label:13C(9)	13C%_Phospho_Tyr	and Lvs) C13 label (Phosphotyrosine)	88.996524	88.9138	H C(+9) 13C(9) O
544	Capy	View	P	212	+Phospho NEIAA:2H(5)	NEIAA-dS	N-ethyl iodoacetamide-d5	90.004148	90.1353	(3) P H(2) 2H(5) C(4) N
	Copy		-			O-Methylphosphate	O-Methylphosphorylation	83.961981	94.0065	0 H(3) C O(3) P
			-							

Comprehensive and accurate information about post translational and chemical modifications is an essential factor in the success of protein identification. In Mascot, we take our list of modifications from Unimod, which is an on-line modifications database.


Unimod, View			ications for mass spectron 6]	netry		Malp
Back to list						
Accession #	56		PSI-MS Name	Acetyl:2H(3)	Interim Name	AcetyLheavy
Description	Acetate 1	abeling reagent (N	i-term 6 K) (heavy form, +3ar	mu)		
Alt. Description	N-trideut	eriumacetoxy.				
Composition	H(-1) 2H	(3) C(2) O	Monoisotopic	45.029295	Average	45.0552
Specificity De	finition 1					
Site	ĸ		Position	Anywhere	Classification	Isotopic label
Hidden	1		Group	1		
Specificity De						1111 (1111)
Site	N-term		Position	Any N-term	Classification	Isotopic label
Hidden	1		Group	2		
Notes and Ref						
Source	PubMed PMID PubMed	Reference	11857757			
Source	PubMed	Reference	11999733			
Source	PubMed PMID	Reference	12175151			
Source	lamuot	Reference	Controlling Deuterium isotop Fred E., Department of Chem	e effects in comparative proteon nistry, Purdue University, West L	ics. Zhang, Roujian: Sioma, Cathy afayette, IN, USA. Analytical Chemic	S.; Thompson, Robert A.; Xiong, Li: Regnier, http://2
Source	Journal	Reference	Global internal standard tech University, West Lafayette, 3	nology for comparative proteom N, USA. Journal of Chromatograp	ics. Chakraborty, Asishi Regnier, Fr My, A (2002), 949(1-2), 173-184.	ed E., Department of Chemistry, Purdue
Source	Journal	Reference	Comparative proteomics bas Peiran: Chakraborty, Asish:	ed on stable isotope labeling and Seeley, Erin; Sioma, Cathy; Tho	affinity selection. Regnier, Fred E.; mpson, Robert A. Department of Ch	Riggs, Larry; Zhang, Roujian; Xiong, U; Uu, emistry, Pu
Curator	penner	Last Modified	2006-10-16 10:02:50		Verified	Yes
Back to list						

There are other lists of modifications on the web, like DeltaMass on the ABRF web site and RESID from the EBI, but none is as comprehensive as Unimod

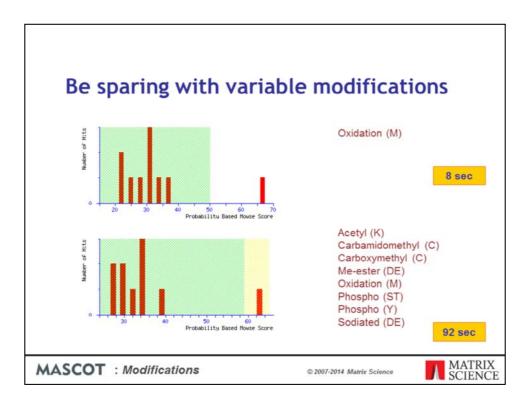
Mass values are calculated from empirical chemical formulae, eliminating the most common source of error. Specificities can be defined in ways that are useful in database searching, and there is the option to enter mass-spec specific data, such as neutral loss information. This screen shot shows one of the better annotated entries, I can't pretend that all of them are this detailed. Nevertheless, it is a very useful, public domain resource that beats having to create your own list in an Excel spreadsheet or on the back of an envelope.


If you go to the help page, there is a link to download the contents of Unimod as a Mascot modifications file. This is the easiest way to keep the modifications list on an in-house Mascot server up-to-date

Here is a tip. The default list of modifications displayed in the Mascot search form is a short list, containing only the most common mods. If you want to see the complete list of mods, and you are using Mascot 2.2 or earlier, you need to follow the link at the bottom of the search form selection page

Matrix Science - Mass	cet - ×		- • ×
+ → C 🗋 www	w.matrixscience.com/cgi/form_default	ts.pl	្ន់ 🖬 🗉
100000000000000000000000000000000000000	search form defaults		
Database	SwissProt - NCBlor contaminants cRAP		
Taxonomy	All entries	•	
Enzyme	Trypsin •		
Allow up to	1 • missed cleavages		
Fixed modifications	2-dimethylsuccinyl (C) 2-monomethylsuccinyl (C) 2-minobenzyl (Y) 2-succinyl (C) 2HPG (R)	Î	
Variable modifications		ii.	
Show all mods.	8		
Quantitation	None •		
Peptide tol. ±	12 Da • #13C 0 •		
MS/MS tol. ±	0.6 Da •		
Peptide charge	[1+ · ·		
Monoisotopic	* Average 0		
Data format	Mascot generic • (MS/MS only)		
Instrument	Default • (HS/HS only)		
Decoy	0		
Error Inlarant	10		

Check the box for Show all mods, then choose Save. This still sets the default state of the checkbox in Mascot 2.3, but we decided to place the checkbox on the search form, so as to make it easier to swap between the short and long lists.



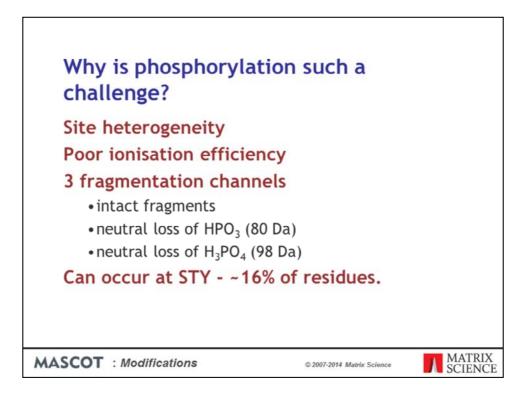
It is extremely important that you do not choose more than the absolute minimum number of variable modification in a search. We talked about this in an earlier presentation, but it is worth repeating.

Variable or differential or non-quantitative modifications are expensive, in the sense that they increase the time taken for a search and reduce its specificity. This is because the software has to permute out all the possible arrangements of modified and unmodified residues that fit to the peptide molecular mass. As more and more modifications are considered, the number of combinations and permutations increases geometrically. The so-called combinatorial explosion.

Some variable modifications are worse than others. Modifications that only apply to a terminus, especially if they only apply when particular residue is at the terminus, like pyro-glu, make little difference to the number of peptides to be tested. The problem modifications are the ones that apply to residues in any position, especially if they apply to multiple residues, like phosphorylation.

Unless you have enriched the sample in a particular PT-mod, e.g IMAC for phosphopeptides, it is usually not a good idea to try and catch PT-mods in a first pass search. Better to use a second pass search, which we call an error tolerant search, to catch the low abundance mods. We will come back to this later.

To illustrate this point. This search of a single MS/MS spectrum, using one variable mod, gives a nice, statistically significant match.

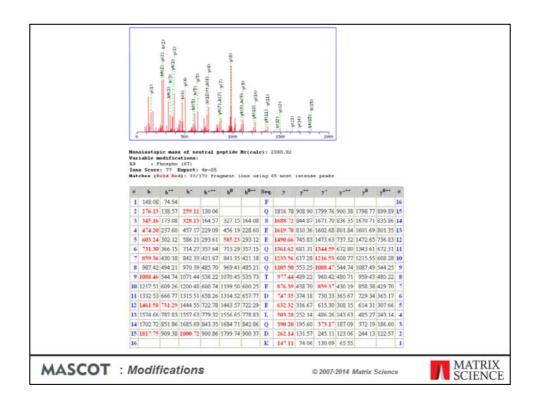

If the search is repeated with 8 mods, the match is the same, with an identical score, but now it is barely significant.

All of these mods have effectively increased the size of the database by a factor of 30

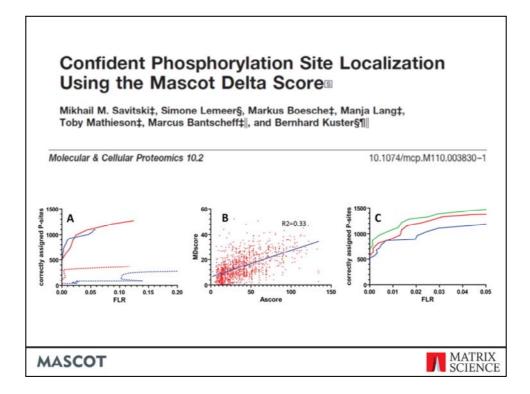
What's worse, the search takes over 10 times as long!

So, use variable mods sparingly. You'll get better results and faster.

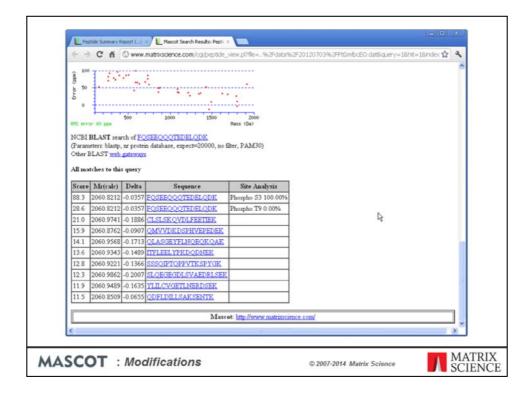
By the way, the yellow region in the histogram indicates scores above the homology but below the identity thresholds. You will only see these regions highlighted in an MS/MS search report if it is a search of a single spectrum.



Of all post-translational modifications, phosphorylation is one of the most interesting and also one of the most difficult. Why is it such a challenge?

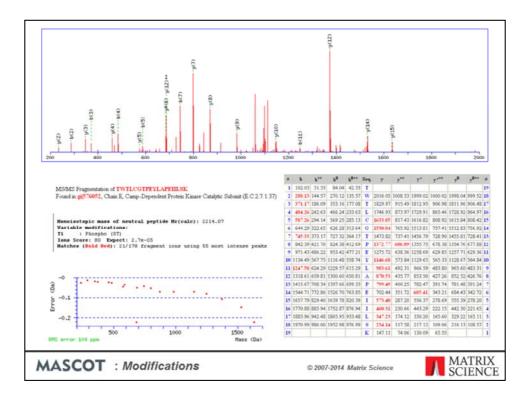

Peptide Summary Report Format As Peptide Summary ♥ Hitlp. Significance threshold p< 0.05 Max. number of his AUTO Significance threshold p< 0.05 Max. number of his AUTO Standard scoring ⓒ MudPTT scoring ◯ Ions score or expect cut-off ◯ Show sub-sets ◯ Show pop-ups ⓒ Suppress pop-ups ◯ Sort unarsigned Decreasing Score ♥ Require bold red Select All Select None Search Selected □ Error tolerant . CASE BOUTH Mass: 25091 Score: 80 Matches: 1(1) Sequences: 1(1) Beta-casein 05=Bos taurus QH <csn2 +="" -="" 0="" 0.0327="" 1="" 1.6e="06" 1031.6000="" 2006.0212="" 2606.7853="" 80="" check="" delta="" error="" expect="" hit="" in="" include="" k.fqsee000tedelqek.i="" miss="" mr(calc)="" mr(expt)="" observed="" peptide="" pf="1" phon<="" query="" rank="" score="" search="" sv="2" th="" this="" to="" tolerant="" unique="" v="" □="" ♥=""></csn2>
Sugnificance threshold p< 0.05 Max. number of his AUTO Standard scoring © MudPIT scoring ○ Ions score or expect cut-off ○ Show sub-sets ○ Show pop-ups © Suppress pop-ups ○ Sort unassigned Decreasing Score ♥ Require bold red □ Select AN Select None Search Selected □ Error tolerant 1. <u>CASE_BOULD</u> Hass: 25091 Score: 86 Hatches: 1(1) Sequences: 1(1) Beta-casein OS=Bos taurus GN=CSN2 PE=1 SV=2 □ Check to include this hit in error tolerant search Query Observed Hr(expt) Hr(calc) Delta Miss Score Expect Rank Unique Peptide
Standard scoring MudPIT scoring Ions score or expect cut-off Show pub-sets Show pop-ups Sourch Selected First tolerant Select None Search Selected First tolerant CASE BOVIN Hass: 25091 Score: 86 Hatches: 1(1) Sequences: 1(1) Beta-casein OS=Bos taurus GN=CSN2 PZ=1 SV=2 Check to include this hit in error tolerant search Query Observed Hr(expt) Hr(calc) Delta Miss Score Expect Rank Unique Peptide
Show pop-ups Suppress pop-ups Sort unassigned Decreasing Score Require bold red Select Name Select N
Select All Select None Search Selected Error rolerant 1. CARE_BOYIN Mass: 25091 Score: 88 Matches: 1(1) Sequences: 1(1) Beta-casein 05=Bos taurus GN=CSN2 PE=1 SV=2 Check to include this hit in error tolerant search Check to include this hit in error tolerant search Query Observed Mr(expt) Mr(calc) Delta Miss Score Expect Rank Unique Peptide
1. CASE_ROUTH Mass: 25091 Score: 88 Matches: 1(1) Sequences: 1(1) Beta-casein 08=Bos taurus GM+CSN2 PE=1 SV=2 Check to include this hit in error tolerant search Query Observed Mr(expt) Mr(calc) Delta Miss Score Expect Rank Unique Peptide
Beta-casein OS=Bos taurus GN=CSN2 PE=1 SV=2 Check to include this hit in error tolerant search Query Observed Mr(expt) Mr(calc) Delta Miss Score Expect Rank Unique Peptide
Top scoring peptide matches to query I Pret Boore greater than 39 indicates homology CARE Score greater than 43 indicates identity Bets Score Expect Delta Hit Protein Peptide CARE Score 1.6e-06 -0.0357 1 CASE BOVIN K.rogEtCoogTEDELODK.I Bets 28.6 1.5 -0.0357 1 CASE BOVIN K.rogEtCoogTEDELODK.I Bets 28.6 1.5 -0.0357 1 CASE BOVIN K.rogEtCoogTEDELODK.I 15.9 28.0 -0.0907 K.OGTWINKROPHIZEDEDEK.G 14.1 42 -0.1713 K.OGLAGETFLINGKONAL R
Search Pat 13.6 47 -0.1469 K. UFLEELTPROQUER.S 12.6 58 -0.1366 K. SSS01PT0PPURDONEK.S
Type of sea 12.3 64 -0.2007 K.SSOUF/UPY_LSPIAN.0 Enzyme 11.9 71 -0.1635 K.YLLCVGETLMERDEEK.R

Lets look at an example or two.

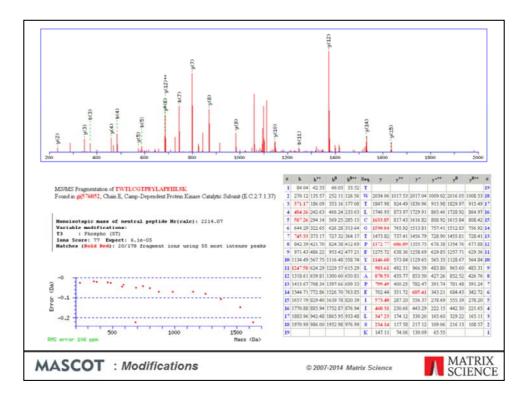

One of the most common phosphopeptides comes from the milk protein, beta casein. There are two potential phosphorylation sites, S and T, but only one is modified. Because the two sites are widely separated, the two arrangements get very different scores.

Beautiful spectrum; long run of y ions; move site to T9 and many matches would disappear

Mascot 2.4 reports site localisation probabilities using the delta score method published in MCP by Bernard Kuster's group. They analysed a collection of synthetic analogs of real phosphopeptides and determined what score difference was required to determine the correct site with an error rate of (say) 5%. Because we don't expect everyone to calibrate their data in this way, we have made the calculation slightly more conservative. A score difference of 10 would give approximately 90% probability that the higher scoring arrangement was correct.



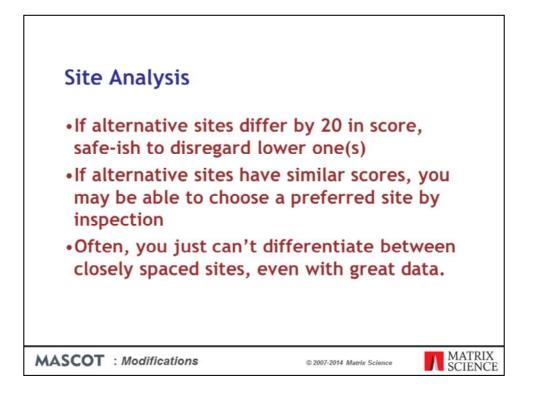
A very large score difference such as the one we were just looking at gives 100% likelihood that the phosphate is on S3.


	II. C HEHINGTONIC	ice.com/cgi/mast	er_results.pl?fie=/data/2013	20704/FtGm11	lewT.dat		☆
Peptide St	unmary Report						
Format As	Peptide Summary	×			Help		
	Significance threshold p<	0.05	Max number of hits 20				
	Standard scoring Mu	APIT scoring O	Ions score or expect cut-off	t [0	Show sub-sets	1	
	Show pop-ups 💿 Suppr	ress pop-ups O	Sort unassigned Decreasing	g Score 💌	Require bold red		
Select All	Select None Search	Selected	firor tolerant				
Chec	k to include this hit y Observed Mr(exp	tinase catalyt t in error to pt) Mr(calc	cic subunit alpha OS=Bo blerant search) Delta Hiss Score	Expect Rar	uk Unique Pep	lide	
☐ Chec Quer ♥ Prot KAPC	-dependent protein k: k to include this hit Observed Hr(exp 1107.9039 2213.79 Top scoring peptide Score greater than Score greater than	tinase catalyt t in error to pt) Mr(calc 933 2214.068 e matches to 30 indicates 42 indicates	ic subunit alpha 08-Bo lerant search) Delta Hiss Score 3 -0.2750 0 80 i query 1 homology identity	os taurus G	N-PRRACA PE-1 uk Unique Pep U R.T	LIGE WILCGTPEYLAPEI	ILSK.G + 1
Quer Quer Prot	dependent protein k: k to include this hit 00served Nr(exp 107.9039 2213.79 Top scoring peptide Score greater than Score greater than Score Expect	tinase catalyt t in error to 933 2214.068 e matches to 30 indicates 42 indicates Delta Hit	ic subunit alpha 08-Bo lerant search) Delta Hiss Score 3 -0.2750 0 80 i query 1 homology identity	es taurus G Expect Rar 8.5e-06 1	N-PRRACA PE=1 W Unique Pep U R.J PRKACJ	lide	ILSK.6 + 1
Chec Query Prot KAPC CAMP	dependent protein k: k to include this hit Diserved Mr(exp 107,9019 221.79 Top sooring peptide Score greater than Score Begeet 00.4 0.5 = 0.5 = 0.4 76.9 1.9 = 0.3	tinase catalyt t in error to pt) Mr(calc 933 2214.060 e matches to 30 indicates Pelta Hit -0.2750 1 -0.2750 1	<pre>ic subunit alpha 08-Bo lerant search) Pelta Hiss Score 3 -0.2730 0 80 1 query 1 homology identity Protein Peptide KAPCA BOVIN R.TWILCOT KAPCA BOVIN R.TWILCOT KAPCA BOVIN R.TWILCOT</pre>	Expect Rar 8.5e-06 1 TPEYLAPEIIL TPEYLAPEIIL TPEYLAPEIIL	N-PRKACA PE-1 hk Unique Pep k U R.g SK.G SK.G N-PRKACJ	LIGE WILCGTPEYLAPEI	ILSK.6 + 1
Query Query Prot <u>XAPC</u> CAMP <u>KAPC</u>	dependent protein k: k to include this hit Observed Mr(exp 107,9019 221.79 Top scoring peptide Score greater than Score Begeet 00.4 0.58-06 -76.9 1.98-05 -18.7 0.13 -18.0 15 -12.6 51 -	thase catalyt t in error to 933 2214.060 e matches to 30 indicates 42 indicates 42 indicates Delta Hit -0.2750 1 -0.2750 1 -0.2750 1	<pre>ic subunit alpha 08-Bo lerant search) Pelta Hiss Score 3 -0.2730 0 80 1 query 1 homology identity Protein Peptide KAPCA BOVIN R.TWILCO KAPCA BOVIN R.TWILCO KAPCA BOVIN R.TWILCO KAPCA BOVIN R.TWILCO SALATAR K.030801</pre>	Expect Rar 8.5e-06 1 TPEYLAPEIIL TPEYLAPEIIL TPEYLAPEIIL TPEYLAPEIIL TPEYLAPEIIL	N-PRKACA PE-1 k Unique Pep U R.J SK.G SK.G SK.G SK.G SK.G SK.G A-PPKJ SK.A PE-1	PE=2 SV=3 CA PE=2 SV=2	ILSK.G + 1
Quer Quer V Prot CAMP KAPC CAMP KAPC CAMP	Source Bypect 100.2017 0.000 100.2017 0.000 100.2017 0.000 100.2017 0.000 100.2017 0.000 100.2017 0.000 100.2017 0.000 100.2017 0.000 100.2017 0.000 100.2017 0.000 12.6 51 12.6 51 12.6 51	thase catalyt t in error to 933 2214.060 e matches to 30 indicates 42 indicates 0-2750 1 -0.2750 1 -0.2750 1 -0.2711 3 -0.2111 3	<pre>ic subunit alpha 08-Bo lerant search) Pelta Hiss Score 3 -0.2730 0 00 1 query 1 homology identity Protein Peptide KAPCA BOVIN R.IWILCOI KAPCA BOVIN R.IWILCOI KAPCA BOVIN R.IWILCOI KAPCA BOVIN R.TWILCOI 09A, XTLFT K.00300BL 09A, XTLFT K.0030BL</pre>	Expect Rar Expect Rar 8.5e-06 i TPEYLAPEILL TPEYLAPEILL ILGIP23PGVP TLGIP23PGVP	N-PBRACA PE-1 ak Unique Pep U R. I SK.G SK.G SK.G SK.G N-PPR/ SK.G ALLSK.L ALLSK.L PREAC/	tide FILCOTPEYLAPEI PE=2 SV=3 CA FE=2 SV=2 1 SV=2	ILSR.6 +)
Chec Query Prot KAPC CAMP KAPC CAMP	dependent protein k: k to include this hi r beerved Hr (eog. 1107.9039 2213.79 Top socing pestid Score greater than Score Expect 00.4 0.5e-06 - 10.0 15 - 12.6 51 - 12.6 51 - 12.6 51 - 12.6 51 - 12.6 51 - 12.6 51 -	the second secon	<pre>is subunit alpha 05-Bo larant search) Delta Hiss Score 3 -0.2750 0 00 1 query 1 homology identity Protein Peptide RAPCA_BOVIN R.TWILCO KAPCA_BOVIN R.TWILCO KAPCA_BOVIN R.TWILCO KAPCA_BOVIN R.TWILCO SAXTUPT K.05030HJ 05AXTUPT K.0520HJ</pre>	Expect Rar 8.5e-06 1 IPEYLAPEIIL IPEYLAPEIIL IPEYLAPEIIL IPEYLAPEIIL IPEYLAPEIIL IPEYLAPEIIL ILGIP23PGVP ILGIP23PGVP ILGIP23PGVP	N-PRKACA PE-1 i U R. <u></u> SK.G SK.G SK.G SK.G ALLSK.L ALLSK.L PE- PRKACJ	FLCGTPEYLAPET PE=2 SV=3 CA PE=2 SV=2	11.5K.6 +
Chec Quer; Prot EAPC CAMP EAPC CAMP EAPC CAMP EAPC CAMP EAPC CAMP	Source Baserved Hr(exp 107.9019 221.79 Top scoring peptide 3007 Score greater than Score greater than Score greater than 30.4 Score greater than 30.7 18.7 0.13 18.7 0.13 12.6 51 12.6 51 12.6 51 12.6 51 12.6 51 12.6 51 12.6 51 12.6 51 12.6 51 12.6 51 12.6 51 12.6 51	thase catalyt t in error to 933 2214.060 e matches to 30 indicates 42 indicates 90.2750 1 -0.2750 1 -0.2750 1 -0.2750 1 -0.2750 1 -0.2111 3 0.2111 2 0.2111 3	<pre>ic subunit alpha 08-Bo lerant search) Delta Hiss Score 3 -0.2750 0 00 1 dentity Protein Peptide RAPCA_BOVIN R.IWILCO RAPCA_BOVIN R.IWILCO KAPCA_BOVIN R.TWILCO CAA_SULTR K.0030HL] 05A_XTLFT K.0030HL] 05A_XTLFT K.0030HL] 05A_XTLFT K.0030HL] 05A_XTLFT K.0030HL] 05A_XTLFT K.0030HL] 05A_XTLFT K.0030HL]</pre>	Expect Rar B.5e-06 1 PFTLAPEIL PFTLAPEIL PFTLAPEIL PFTLAPEIL ICITS25007 ILGIPS2507 ILGIPS2507 ILGIPS2507 ILGIPS2507	ALUSAL PE-1 AK UNIQUE PEPE U R.J PRKACJ PRKACJ ALUSAL A PE- ALUSAL A PE- ALUSAL PE-1 ALUSAL PE-1	IIde FTL COTPEYLAPEI PE=2 SV=3 CA PE=2 SV=2 1 SV=2 1 SV=3	ILSK.6 +)

However, casein peptides are unusually easy to analyse. Here is a more typical example of what you can expect to find - a strong match to a phosphopeptide from a protein kinase.

There is little to choose in terms of score between having the phosphate on T1 or T3.

We can see why there is little difference in score between placing the phosphate on T1 or T3. There is just one extra matched peak, and in probability terms, there isn't a huge difference between 20 matches using 55 experimental peaks and 21. However, if you had to choose one or the other, you'd probably go for T1

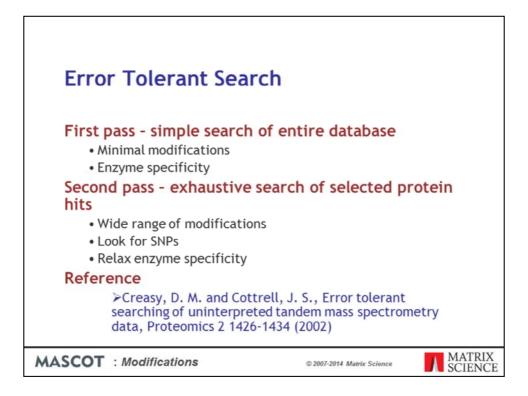

HIS CT		C www.	matrixscience.com/cgi/peptide_view.		V LOV / VHIDLI' FIGENTIEW 1.08	routine A - You in - TON YORY, M
	for 62 pps		Ratz	(Da)		
8 -50	+					
9-60	+*					
-70	1					
-80	1,					
		500	1000 1500			
RTS err	for 62 pps		Maco	(Da)		
			TLCGTPEYLAPEIILSK			
			n database, expect=20000, no filter,	PAM30)		
Other	BLAST web	gateway				
All m	atches to thi	s oners				
		a darry				
Score	Mr(calc)	Delta	Sequence	Site Analysis		
80.4	2214 0683	-0 2750	TWILCGTPEYLAPEIILSK	Phospho T1 69.17%		
00.4	6611.0002		A TT A M S S A A M A MIT M. MEMOURY	Anospire at or tree		
76.9	-	_	TWILCOTPEYLAPEIILSK	Phospho T3 30.83%		
	2214.0683	-0.2750				
76.9	2214.0683 2214.0683	-0.2750	TWILCGTPEYLAPEIILSK	Phospho T3 30.83%		
76.9	2214.0683 2214.0683 2214.0683	-0.2750 -0.2750 -0.2750	TWILCGTPEYLAPEIILSK TWILCGTPEYLAPEIILSK	Phospho T3 30.83% Phospho T7 0.00%		
76.9 38.7 18.0	2214.0683 2214.0683 2214.0683 2214.0683 2214.0044	-0.2750 -0.2750 -0.2750 -0.2111	TWILCGIPEYLAPEIILSK TWILCGIPEYLAPEIILSK TWILCGIPEYLAPEIILSK	Phospho T3 30.83% Phospho T7 0.00%		
76.9 38.7 18.0 12.6	2214.0683 2214.0683 2214.0683 2214.0683 2214.0044 2214.0044	-0.2750 -0.2750 -0.2750 -0.2111 -0.2111	TWTLCGTPEYLAPEILSK TWTLCGTPEYLAPEILSK TWTLCGTPEYLAPEILSK GGSGMLTLGPSSPGVPAELSK	Phospho T3 30.83% Phospho T7 0.00%		
76.9 38.7 18.0 12.6 12.6	2214.0683 2214.0683 2214.0683 2214.0044 2214.0044 2214.0044 2214.0044	-0.2750 -0.2750 -0.2750 -0.2111 -0.2111 -0.2111	TWTLCGTPEYLAPEIILSK TWTLCGTPEYLAPEIILSK TWTLCGTPEYLAPEIILSK GGSGMLTLGIPSSPGVPAELSK GGSGMLTLGIPSSPGVPAELSK	Phospho T3 30.83% Phospho T7 0.00%		
76.9 38.7 18.0 12.6 12.6 12.6	2214.0683 2214.0683 2214.0683 2214.0044 2214.0044 2214.0044 2214.0044	-0.2750 -0.2750 -0.2750 -0.2111 -0.2111 -0.2111 -0.2111	TWILCOTPEYLAPEILSK TWILCOTPEYLAPEILSK TWILCOTPEYLAPEILSK GOSGMUTLGIPSSPGVPAELSK GOSGMUTLGIPSSPGVPAELSK GOSGMUTLGLPSSPGVPAELSK	Phospho T3 30.83% Phospho T7 0.00%		
76.9 38.7 18.0 12.6 12.6 12.6	2214.0683 2214.0683 2214.0683 2214.0044 2214.0044 2214.0044 2214.0044 2214.0044	-0.2750 -0.2750 -0.2750 -0.2111 -0.2111 -0.2111 -0.2111 -0.2111	TWILCOTPEYLAPEILSK TWILCOTPEYLAPEILSK TWILCOTPEYLAPEILSK GGSGMLILGIPSSPGVPAELSK GGSGMLILGIPSSPGVPAELSK GGSGMLILGIPSSPGVPAELSK	Phospho T3 30.83% Phospho T7 0.00%		
76.9 38.7 18.0 12.6 12.6 12.6 12.6 11.9	2214.0683 2214.0683 2214.0683 2214.0044 2214.0044 2214.0044 2214.0044 2214.0044	-0.2750 -0.2750 -0.2750 -0.2111 -0.2111 -0.2111 -0.2111 -0.2111	TWILCOTPEYLAPEIILSK TWILCOTPEYLAPEIILSK TWILCOTPEYLAPEIILSK GOSGMITILGIPSSPGVPAELSK GOSGMITILGIPSSPGVPAELSK GOSGMITILGIPSSPGVPAELSK GOSGMITILGIPSSPGVPAELSK	Phospho T3 30.83% Phospho T7 0.00%		
76.9 38.7 18.0 12.6 12.6 12.6 12.6 11.9	2214.0683 2214.0683 2214.0683 2214.0044 2214.0044 2214.0044 2214.0044 2214.0044	-0.2750 -0.2750 -0.2750 -0.2111 -0.2111 -0.2111 -0.2111 -0.2111	TWILCOTPEYLAPEIILSK TWILCOTPEYLAPEIILSK GOSOMITLOPSSPOUPAELSK GOSOMITLOPSSPOUPAELSK GOSOMITLOPSSPOUPAELSK GOSOMITLOPSSPOUPAELSK GOSOMITLOPSSPOUPAELSK GOSOMITLOPSSPOUPAELSK	Phospho T3 30.83% Phospho T7 0.00%	com/	

The delta score site analysis suggests 70% probability on T1 and 30% on T3 ... much less clear cut. We can't be confident which site is modified, or whether there is a mixture of both isoforms. But, we can be confident it is not on T7 or Y10 because the score drops dramatically, and these are assigned 0% probability.

Sometimes, it is worth looking at the sequence annotations to see whether these are known phosphorylation sites. If the database sequence doesn't have detailed annotations, you can follow the BLAST link to try and match the peptide to an entry from a better annotated database. In this case, we're searching SwissProt, so we can go straight to the protein view report

TT BKO2 PLOS PLOS ING Phosphothreonine (By similarity). = T1 TT BKO2 PLOS PLOS ING Phosphothreonine (By similarity). = T3 TT BKO2 PLOSPhothreonine (By similarity). = T3 TT BKO2 PLOSPhothreonine (By similarity). = T3 TT BKO2 PLOSPhothreonine (By similarity). = T3 TT BKO2 PLOSPhothreonine. TT BKO2 PLOSPhothreonine. TT BKO2 PLOSPhothreonine. TT BKO2 PLOSPhothreonine. TT BKD2 PLOSPhothreonine. TT BKD2 PLOSPhothreonine. TT STAND ST TC CONFLICT 202 202 T CONFLICT 204 T -> N (In Ref. 4; Ak sequence). TC CONFLICT 205 206 L -> S (In Ref. 4; Ak sequence). TT CONFLICT 207 N -> D (In Ref. 4; Ak sequence). TT STEAND 44 52 TT STEAND 54 63 TT STEAND 54 63 <td< th=""><th>22.5</th><th>→ C fi</th><th></th><th></th><th>ce.com/cgi/protein_view.pl?file=%2Fdata%2F20120704%2FFtGmlfewT.dat8ht=KAPCA_BOVIN8db, 🏠 🔧</th></td<>	22.5	→ C fi			ce.com/cgi/protein_view.pl?file=%2Fdata%2F20120704%2FFtGmlfewT.dat8ht=KAPCA_BOVIN8db, 🏠 🔧
<pre>TT MCO_RES 196 196 Phosphothreonine (By pimilarity). = T1 MCO_RES 196 196 Phosphothreonine by PPKN, = T3 TT MCO_RES 202 202 Phosphothreonine (By similarity). = T3 TT MCO_RES 309 309 Phosphoterine. TT LUTD 3 3 Phosphoterine. TT LUTD 3 3 Phosphoterine. TT LUTD 4 3 3 Phosphoterine. TT CONFLICT 202 204 204 F -> 0 (in Ref. 4) AA sequence). TT CONFLICT 204 204 L -> 0 (in Ref. 4) AA sequence). TT CONFLICT 205 207 N -> D (in Ref. 4) AA sequence). TT CONFLICT 205 207 N -> D (in Ref. 4) AA sequence). TT CONFLICT 207 207 N -> D (in Ref. 4) AA sequence). TT CONFLICT 206 L -> S (in Ref. 4) AA sequence). TT TT TURN 64 65 TT STRAND 54 63 TT STRAND 54 63 TT STRAND 54 66 TT STRAND 54 66 TT STRAND 107 112 TT STRAND 1</pre>	11	HOD PLJ	120	17	ruosphoraleonine (by similaricy).
T MCO_RES 190 190 Phosphothconing: by PPFK1. T MCO_RES 202 CO Phosphothconing: (by similarity). = T3 T MCO_RES 303 N-expiratoryl glycine. T MUTAGN 3 N-expiratoryl glycine. T MCO_RES 202 T -> N (in Ref. 4) AA sequence). T COMFLICT 206 206 L -> S (in Ref. 4) AA sequence). T COMFLICT 206 206 L -> S (in Ref. 4) AA sequence). T COMFLICT 206 206 L -> S (in Ref. 4) AA sequence). T COMFLICT 206 206 L -> S (in Ref. 4) AA sequence). T COMFLICT 206 206 L -> S (in Ref. 4) AA sequence). T T MULX 16 32 T TSTRAMD 46 66 TT STRAMD 107 112 TT STRAMD					
TT NOC_RES 202 202 Phosphostine. TI NOC_RES 319 Phosphostine. FT LIPID 2 2 N-syristoyl glycine. FT NUTLOCT 202 202 T -> N (in Ref. 4; Ak sequence). FT CONFLICT 202 203 T -> N (in Ref. 4; Ak sequence). FT CONFLICT 206 204 E -> N (in Ref. 4; Ak sequence). FT CONFLICT 206 204 E -> N (in Ref. 4; Ak sequence). FT CONFLICT 206 204 E -> N (in Ref. 4; Ak sequence). FT CONFLICT 206 204 L -> N (in Ref. 4; Ak sequence). FT CONFLICT 206 204 L -> S (in Ref. 4; Ak sequence). FT CONFLICT 206 204 L -> S (in Ref. 4; Ak sequence). FT CONFLICT 206 204 K => S (in Ref. 4; Ak sequence). FT STEND 14 30 31 FT NELIX 14 30 31 FT STEND 14 12 31					
FT MOD_RES 339 339 Phosphoserine. FT LIPTO 2 N-spristoyl glycine. FT MTTAGEN 3 N-spristoyl glycine. FT CONFLICT 202 T -s N (in Ref. 4; AA sequence). FT CONFLICT 205 204 T -s N (in Ref. 4; AA sequence). FT CONFLICT 205 204 L -s S (in Ref. 4; AA sequence). FT CONFLICT 205 204 L -s S (in Ref. 4; AA sequence). FT CONFLICT 205 204 L -s S (in Ref. 2; AA sequence). FT TSTRAMD 44 52 FT STRAMD 44 52 FT STRAMD 56 64 FT STRAMD 60 64 FT STRAMD 107 112 FT STRAMD 170 112 FT STRAMD 173 175 FT STRAMD 173 175 FT STRAMD 173 175 FT STRAMD 163 175					Phosphothreonine; by PDPK1. = T3
PT LiPID 2 2 N-mprintopi glycime. PT NUTAGN 3 N-b) No myristoplation. PT CONFLICT 202 202 T -> N (in Ref. 4; Ak sequence). PT CONFLICT 206 204 E -> S (in Ref. 4; Ak sequence). PT CONFLICT 206 206 L -> S (in Ref. 4; Ak sequence). PT CONFLICT 206 206 L -> S (in Ref. 4; Ak sequence). PT CONFLICT 206 206 L -> S (in Ref. 4; Ak sequence). PT CONFLICT 207 N -> D (in Ref. 4; Ak sequence). PT CONFLICT 206 206 PT CONFLICT 207 N -> D (in Ref. 4; Ak sequence). PT CONFLICT 206 206 L -> S (in Ref. 4; Ak sequence). PT CONFLICT 206 206 L -> S (in Ref. 4; Ak sequence). PT STRIND 44 52 String (in Ref. 4; Ak sequence). PT STRIND 10 112 String (in Ref. 4; Ak sequence). PT STRIND 11 12 String (in Ref. 4; Ak seq					
FT NUTJAČEN 3 3 N-5D: No myristopletion. FT CONFLICT 204 204 F. > Q (in Ref. 4) AA sequence). FT CONFLICT 204 204 E -> Q (in Ref. 4) AA sequence). FT CONFLICT 206 L -> Q (in Ref. 4) AA sequence). FT CONFLICT 206 L -> Q (in Ref. 4) AA sequence). FT CONFLICT 207 N -> D (in Ref. 4) AA sequence). FT FC CONFLICT 206 L -> Q (in Ref. 4) AA sequence). FT CONFLICT 207 N -> D (in Ref. 4) AA sequence). FT STEAMD 44 52 FT STEAMD 54 63 FT STEAMD 67 64 FT STEAMD 67 76 FT STEAMD 67 76 FT STEAMD 107 112 FT STEAMD 107 112 FT STEAMD 107 112 FT STEAMD 107 122 FT STEAMD 107 122 </td <td></td> <td></td> <td></td> <td></td> <td></td>					
T CONFLICT 202 202 T -> N (in Ref. 4) AM sequence). T CONFLICT 204 E -> S (in Ref. 4) AM sequence). FT CONFLICT 206 204 E -> S (in Ref. 4) AM sequence). FT CONFLICT 206 204 E -> S (in Ref. 4) AM sequence). FT CONFLICT 206 206 L -> S (in Ref. 4) AM sequence). FT CONFLICT 207 N -> D (in Ref. 4) AM sequence and 3; AM sequence). FT TT STEAMD 44 52 FT TSTEAMD 54 63 FT STEAMD 64 66 FT STEAMD 107 112 FT STEAMD 107					
TT CONFLICT 204 204 E -> Q (in Ref. 4; AA sequence). TT CONFLICT 205 207 207 Los A (in Ref. 4; AA sequence). TT CONFLICT 205 207 N -> D (in Ref. 4; AA sequence). TT CONFLICT 205 207 N -> D (in Ref. 4; AA sequence). TT ELLIX 16 22 TT ELLIX 16 22 TT STRAND 54 52 TT STRAND 54 63 TT STRAND 54 66 TT STRAND 69 76 TT STRAND 69 76 TT STRAND 107 112 TT STRAND 107 112 STRONGE 107 107 STRONGE 107 107 STR					
T CONFLICT 206 206 L -> S (in Ref. 4; A A sequence). FT CONFLICT 207 N -> D (in Ref. 2; AA sequence and 3; AA sequence). FT CONFLICT 207 N -> D (in Ref. 2; AA sequence and 3; AA sequence). FT RELIX 1 43 FT STEAMD 54 FT STEAMD 54 FT STEAMD 54 FT STEAMD 59 FT TTEND 64 FT STEAMD 57 FT STEAMD 107 FT STEAMD 107 FT STEAMD 107 FT STEAMD 173 STEAMD 173 175 FT STEAMD 173 FT STEAMD 173 FT STEAMD					
T CONTLICT 207 207 N → D (in Ref. 2; AA sequence and 3; AA FT HELIX 16 32 FT HELIX 16 32 FT HELIX 41 43 FT STRAND 44 52 FT STRAND 54 63 FT STRAND 54 63 FT STRAND 54 63 FT HELIX 64 64 FT STRAND 54 63 FT HELIX 65 96 FT HELIX 77 62 FT STRAND 114 122 FT STRAND 114 122 FT STRAND 173 175 FT STRAND 173 175 FT STRAND 173 175 FT HELIX 100 103 FT HELIX 264 273					
T sequence). FH HLLIX 16 FT HKLIX 41 FT HKLIX 41 FT STEAMD 44 FT STEAMD 44 FT STEAMD 64 FT STEAMD 69 FT STEAMD 69 FT STEAMD 107 FT STEAMD 103 FT STEAMD 103 FT STEAMD 103 FT HELIX 200 FT STEAMD 103 FT HELIX 200 FT HELIX 200 STEAMD 303 </td <td></td> <td></td> <td></td> <td></td> <td></td>					
PT HELIX 16 32 PT HELIX 41 43 PT STRAND 44 52 PT STRAND 54 63 PT STRAND 64 64 PT STRAND 64 66 PT STRAND 69 64 PT STRAND 69 64 PT STRAND 69 64 PT STRAND 107 102 PT STRAND 114 122 PT HELIX 140 160 PT STRAND 113 160 PT STRAND 131 103 PT STRAND 173 175 PT STRAND 131 103 PT HELIX 203 205 PT HELIX 264 273 PT HELIX 264 273 PT HELIX 264 280 SCOUCHAUS SIALA SIALA SIALA		CONFLICT	287	287	N -> D (in Ref. 2; A& sequence and 3; A&
FT HELIZ 41 43 FT STRAND 44 52 FT STRAND 54 63 FT STRAND 54 63 FT STRAND 54 63 FT STRAND 54 66 FT STRAND 67 76 FT STRAND 67 76 FT STRAND 107 112 FT STRAND 107 12 FT STRAND 103 114 FT HELIX 203 205 FT HELIX 200 201 FT HELIX 204 253 FT HELIX 204 253 FT HELIX 2050 193					sequence).
TT STRAND 44 S2 TSTRAND 54 63 FT STRAND 54 63 FT STRAND 64 64 FT STRAND 69 76 FT STRAND 69 76 FT STRAND 69 76 FT HELIX 70 82 FT HELIX 10 12 FT STRAND 14 120 FT HELIX 140 121 FT HELIX 141 160 FT STRAND 173 175 FT STRAND 173 175 FT HELIX 200 205 FT HELIX 203 205 FT HELIX 204 214 FT HELIX 204 214 FT HELIX 205 203 FT HELIX 206 209 FT HELIX 206 208 SEQUENCE 3	FΤ				
TT TSTRAND 54 63 TT TURN 64 66 FT STRAND 69 76 FT STRAND 69 76 FT STRAND 69 76 FT STRAND 69 76 FT STRAND 107 112 FT STRAND 131 122 FT STRAND 173 173 FT STRAND 173 173 FT HELIX 208 201 FT HELIX 244 253 FT HELIX 264 279 FT HELIX 303 307					
PT TURN 64 66 PT STEAMD 69 76 PT HELIX 77 82 PT HELIX 76 84 PT STEAMD 107 112 PT HELIX 141 160 PT STEAMD 173 175 PT STEAMD 173 175 PT STEAMD 131 163 PT HELIX 200 205 PT HELIX 200 205 PT HELIX 200 201 PT HELIX 200 203 PT HELIX 206 290 PT HELIX 303 307 PT HELIX 364 340 <t< td=""><td>FT</td><td></td><td></td><td></td><td></td></t<>	FT				
FT STRAND 60 76 FT HELIX 77 82 FT HELIX 66 96 FT HELIX 86 96 FT STRAND 107 112 FT STRAND 114 122 FT HELIX 141 120 FT HELIX 141 160 FT HELIX 170 173 FT HELIX 100 173 FT HELIX 100 174 FT HELIX 100 174 FT HELIX 203 105 FT HELIX 204 203 FT HELIX 204 203 FT HELIX 206 209 FT HELIX 206 200 FT HELIX 206 200 FT HELIX 206 200 FT HELIX 303					
FT HELIX 77 62 FT HELIX 66 96 FT STRAND 107 112 FT STRAND 107 112 FT STRAND 114 122 FT STRAND 114 122 FT STRAND 114 122 FT HELIX 119 136 FT HELIX 119 136 FT HELIX 103 175 FT STRAND 173 175 FT HELIX 200 205 FT HELIX 200 205 FT HELIX 200 204 FT HELIX 204 204 Storestore Storestore Storestore Storestore Storestore Storestore Storestore <td></td> <td></td> <td></td> <td></td> <td></td>					
PT BELIZ 06 96 PT STRAND 107 112 PT STRAND 114 122 PT MELIZ 129 166 PT MELIZ 141 160 PT MELIZ 170 172 PT MELIZ 170 172 PT STRAND 173 175 PT MELIZ 204 205 PT HELIZ 264 273 PT HELIZ 266 290 PT HELIZ 303 307 STRAND SORDALAND SORDALAND SORDALAND SORDALAND					
TT STRAND 107 112 TT STRAND 107 112 TT STRAND 114 122 TT STRAND 114 122 TT STRAND 114 122 TT STRAND 114 122 TT MELIX 129 136 TT STRAND 101 103 TT STRAND 101 103 FT STRAND 103 103 FT HELIX 200 201 FT HELIX 250 203 FT HELIX 206 290 FT HELIX 303 307 Starter Starter 40620 Ntr, Sprater Starter Starter 40620	FT	HELIX	77	82	
TT STRAND 114 122 TT HELLIS 129 136 TT HELLIS 141 160 TT HELLIS 170 172 TT STRAND 173 175 TT HELIX 203 201 TT HELIX 244 253 TT HELIX 264 273 TT HELIX 264 273 TT HELIX 264 298 TT HELIX 363 367 SEQUENCE 351. AUG OF MERINE MENDADATAR LOOPERINT. OTOSPORYME. VENETOONTAK MANDIENTILAWAN MENDADATAR PFLANEERS FRANKULAWAN VENETOONTAK MANDIENTILAWAN LUMONT VILLOWANT MENDADATAR PFLANEERS FRANKULAWAN VENETOONTH HELINGANG TATLC OTPERLAPHEN LEADATAR PFLANEERS FRENEMELLINGONT THELINGONT	FT	HELIX	86	96	
TT STRAND 114 122 TT HELLIS 129 136 FT HELLIS 141 160 FT HELLIS 170 172 TT STEAMD 173 175 TT STEAMD 173 175 TT STEAMD 120 201 TT STEAMD 123 175 TH LIS 202 203 TT HELLIS 202 204 TT HELLIS 244 253 FT HELLIS 264 273 FT HELLIS 264 273 FT HELLIS 264 273 FT HELLIS 264 273 FT HELLIS 264 298 FT HELLIS 303 306 HELLIS 264 298 174 HELLIS 303 306 189 SEGUALATEK SEGUALATIONATION SEGUENCERS FEMBELLIS SEGUALATEK SEGUENCERS SEGUENCE	FT	STRAND	107	112	
FT HELIX 129 136 FT HELIX 141 160 FT HELIX 170 172 FT STRAND 131 160 FT STRAND 131 160 FT STRAND 131 163 FT HELIX 203 205 FT HELIX 200 211 FT HELIX 244 253 FT HELIX 264 273 FT HELIX 264 273 FT HELIX 204 263 FT HELIX 264 273 FT HELIX 204 263 FT HELIX 204 273 FT HELIX 204 273 FT HELIX 205 209 FT HELIX 346 348 SO SOUTENCE 351 A1 40630 SO SOUTENCE STAL A0640 HULINCONT VIMHETONHY MENUPOGONT </td <td></td> <td></td> <td></td> <td></td> <td></td>					
FT HELIX 141 160 FT HELIX 170 172 FT STRAND 173 175 FT STRAND 163 163 FT HELIX 203 205 FT HELIX 203 205 FT HELIX 203 204 FT HELIX 204 214 FT HELIX 264 273 FT HELIX 266 269 FT HELIX 206 293 FT HELIX 303 307 SEQUENCE S31. Al-4 MENDARY SEQUENCE SEQUENCE S31. Al-7 MENDARY MENDARY VENETORNY MELIX 304 MENDARY VENETORNY MELIX MENDARY MENDARY MENDARY MENDARY MENDARY MENDARY MENDARY MENDARY MENDARY MENDARY MENDARY MENDARY MENDARY MENDARY MENDARY MENDARY MENDARY MENDARY					
PT HELIX 170 172 TSTRAND 173 175 PT STRAND 181 163 PT HELIX 200 205 PT HELIX 200 211 PT HELIX 200 211 PT HELIX 209 214 PT HELIX 244 253 PT HELIX 266 269 PT HELIX 206 280 PT HELIX 206 208 PT HELIX 364 348 SO SEQUENCE 351 AJ 4060 SO SEQUENCE 351 AJ 4060 VKIMETONHY MANLIDAGON VLUTEYUMAKILINGON HELIX				160	
TT STRAND 173 175 TSTRAND 173 175 TSTRAND 181 103 FT STRAND 181 103 FT STRAND 181 103 FT HELIX 203 205 FT HELIX 219 234 FT HELIX 219 234 FT HELIX 244 73 FT HELIX 256 269 FT HELIX 236 293 FT HELIX 303 307 SEQUENCIS 334 340 S0000227020EEEED CRC41 SEQUENCIS 334 340 S0000227020EEEED CRC41 MENADORY SEQUENCIA AFAMERY ENTREMENT REFERENCESS SEQUENCIA MENADORY SEQUENCIA AFAMERY ENTREMENT SEQUENCIA MENADORY SEQUENCIA AFAMERY ENTREMENT SEQUENCIA MENADORY SEQUENCIA SEQUENCIA SEQUENCIA SEQUENCIA MENTROSONY SEQUENCIA SEQUENCIA SEQUENCIA SEQUENCIA				172	
PT STRAND 101 103 PT HELIX 203 205 PT HELIX 209 211 PT HELIX 219 234 PT HELIX 244 253 PT HELIX 266 269 PT HELIX 206 293 PT HELIX 206 294 PT	FT				
PT HELIX 203 205 PT HELIX 200 211 PT HELIX 219 234 PT HELIX 244 253 PT HELIX 244 253 PT HELIX 244 253 PT HELIX 264 253 PT HELIX 256 253 PT HELIX 256 293 PT HELIX 303 307 PT HELIX 346 346 SEQUENCEX SSLAMARKO SEQUENCEX ASAGENVERT MERING SAGENVERT AGAGENVERT AGAGENVERT					
PT HELIX 200 211 PT HELIX 219 234 PT HELIX 244 253 PT HELIX 244 253 PT HELIX 266 269 PT HELIX 256 290 PT HELIX 266 290 PT HELIX 303 300 00 SEQUENCE 351 A00 00 SEQUENCE 351 A000 NWINETONEY MANILDRONV VELOVENTA LOPERDIFIC 01 SEQUENCE 351 A000 02 SEQUENCE MANILDRONV VELOVENTA SOPODIZ27D2DEFESD CRC64; NEWIRETONEY MANILDRONV VELOVENTA SOPODIZ27D2DEFESD CRC64; VENETONEY MELINDOOT VUTDYOFAX ENVOR SOPODIZ27D2DEFESD CRC64; VENETONEY HELIX LANOPERINE, MANILDRONV VELINA VUTDYOFAX EMANILDRONV VELINDOOT SOPODIZ VUTDYOFAX EMANILDRONT UTTETINE, FORMULATING SOPODIZ ADOPIZITEK USENETATION HELINDOOT					
FT HELIX 219 234 FT HELIX 244 253 FT HELIX 264 273 FT HELIX 266 269 FT HELIX 296 296 FT HELIX 303 307 FT HELIX 304 346 SQ SQUENCE 351 A47 MONALANKS SEQUENCEL A56 WORMALANKS SEQUENCEL A164 VKIMETONINY MILLDKORV VENDERATION MUTOFORMY FILLANDERATION FILLAND MUTOFORMY FILLANDERATION FILLANDERATION ADOPICIATION HINDLANDERATION FILLANDERATION ADOPICIATION HINDLANDERATION HINDLANDERATION ADOPICIATION HINDLANDERATION HINDLANDERATION ADOPICIATION HINDLANDERATION HINDLANDERATION					
TT HELIX 244 253 TT HELIX 264 273 TT HELIX 286 289 TT HELIX 290 293 TT HELIX 266 290 TT HELIX 206 293 TT HELIX 303 300 TT HELIX 304 304 MONIALANCE 31 340 400 MONIALANCE 301 304 304 MONIALANCE 301 305 304 MONIALANCE 301 305 304 MONIALANCE 301 304 304 MONIALANCE 302 304 304 MONIALANCE 303 306 100 MONIALANCE 304 304 100 MONIALANCE 303 306 100 MONIALANCE JALINOADI 100 100 MONIALANCE JULINOADI 100 100 MONIALANCE JULINOADI 100 100 MONIAL					
PT TURN 264 273 PT TURN 266 269 PT HELIX 290 293 PT HELIX 296 296 PT HELIX 303 307 PT HELIX 304 304 SQ SQUENCE 351 A.F MONALANKS SEQUENCEL ASE MONALANKS SEQUENCEL ASE MONALANKS SEQUENCEL ASE MUNDALANKS SEQUENCEL MUNDALANKS MUNDALANKS SEQUENCEL MUNDALA					
<pre>FT TURN 266 289 FT HELIX 296 293 FT HELIX 296 293 FT HELIX 303 307 FT HELIX 304 346 S000000 SEQUENCE S1: All FS SI All FS SODD22702DEEESD CBCG4: SEQUENCE S1: All FS SI All FS SODD22702DEEESD CBCG4: VENETORNY ANLIDEGRY VILLOUTENT NEEDILGANN PFLVELERS FINENELLING VENETORNY ANLIDEGRY VILLOUTENT NEEDILGANN PFLVELERS FINENELLING VENETORNY HELIDEGRE EMALEXALS.ULTETEINES FINENELLING NEUTOGAR HELIDEGRE EMALEXALS.ULTETEINES FINENELLING ADQUETER USGNUTENT SUSSANEEDILGANN PFLVELERS FINENELLING ADQUETER USGNUTENT SUSSANEEDILGANN PFLVELERS FINENELLING ADQUETER HILDEGRES FEMALEXALS.ULTETEINES FOR HELIDEGGY IGUTDFGFAR HEVGTTET HELIDEGRE HENDUCULTER FOR FORMULT ADQUETER USGNUTENT HENDUCULTER FOR FORMULT </pre>					
PT HELIX 290 293 PT HELIX 296 298 PT HELIX 303 307 PT HELIX 304 340 SOUTENCE 351 AJ, 40620 NW; 59DDD227D2DEEESD CPC64; NGNAAAKKS SEQEEVEREL AKAKEPFLKK WENPAGNTAH LÞOFERIKTL GTOSFGRVHL VKHMETONHY AMKILDROKV VKLOGIENTL NEKRILGANN PFPLVKLEFS FIXMENILINDV HKVYPGGANF SHLAPACAET HALAFKALDULTTETINS HKVYPGGANF SHLAPACAET HALAFKALDULTTETINS HKVYPGGANF SHLAPACAET HALAFKALDULTTETINS HKVPGGANF HKVPGANF HKVPGANF HKVPGGANF HKVPGANF HKVPGGANF HKVPGANF HKVPGGANF HKVPGANF HKVPGANF HKVPGANF HK					
FT HELIX 296 298 FT HELIX 303 307 FT HELIX 303 307 SEQUENCE 351 AA: 04620 HW; 59DDD227D2DEEESD CRC64; MORAAAARKO SEQUENTERL ARAEDFLAK VENFAQATAM LOOFENIETL GTOSPORVEL MORAAARKO SEQUENTERL ARAEDFLAK VENFAQATAM LOOFENIETL GTOSPORVEL MORADFUEL SISA MARAEDFLAKE VENFAQATAM LOOFENIETL GTOSPORVEL MORADFUEL HILSONGTUTL GTPERLARE, ILSNE THILDITTOLER FELLIDOODY IQUTDFORAR EVENGTUTL GTPERLARE, ILSNE THKAN DEWALOPLIY EMALOFPFF ADQ0101ETL VISANUTERU INSUE UNDERLARE PORLAREDFUEL MORADFUEL VISANUTERU INSUENCE HELIDOODY IDUTDFORAR EVENDET HISODOCHUM HELIDUTERUS FOR INSUENCE ADQ0101ETL VISANUTERUS INSUENCE FELLIDOOT					
PT HELIX 303 307 T HELIX 346 348 S0 SEQUENCE 351 AJ: 40620 HW; S9DDD227D2DEEESD CRC64; NGNAAAKKO SEQEEVENEL AKAKEDFLEK WENPAGNTAH LOOFERIKTL GTOSFGRVHL VKHETONHY AMKILDKOKY VKLOGIENTL NEKRILQANN PFPLVKLEFS FIKNMSKI/NYV HKYVPGGHT SHLPLACE THALFYLAR LLOAFT NFFLVKLEFS FIKNMSKI/NYV JCQTUTGTAK WYKGTVTLC GTPKTLAPEI LLSKYTMKAY DWUALQULY EMALGYPFF ADGPIGIFK IVSGMTVTLC GTPKTLAPEI LLSKYTMKAY DWUALQULY EMALGYPFF ADGPIGIFK IVSGMTVTLC GTPKTLAPEI LLSKYTMKAY DWUALQULY EMALGYPFF					
FT HELIX 346 348 SQ SEQUENCE 351 AJ: 40620 HW; S9DDD227D2DEEESD CRC64; MORAAAAKKO BEQEGVKEFL AKAKEDFLEK WENPAQNTAR LDQFERIKTL GTGBFGRVHL VERHETGRHT ARKILDROKV VELGUENTL NEKFLIQAVN PFFLVKLEFS FRAMSKLINV HEVYPGGAR HVRGTVTLC GTPETLAPET ILSKVINKAV DWWALOULIY ERAAGPPFF ADQF10ITER IVSGAVETPS HISDBACHGHT HNEVPLVLFK FFGLUKNOVA DIVISHKEVFAT					
30 SEQUENCE 351 AJ: 40620 HW. 59DD0227D2DEEESD CRC64: NGNAAAKKG SEQEEVERLA KARKEPLAKU KURPLANTAH LOOFERIKTI GTOSFORVHL VKHRETONHY AMKLIDKOKY VKLOCIENT. NEKRILGANN PFPLVKLEFS FIKNMSKI/HW HKYVPGORFF SHLPLACERE HHALFVLAL, ULTFFLING LOIFDELKF SHLLIDGOOY IQVTDF0FAK KVKOTVTLC GTPKTLAPEI ILSKYTMKAY DWUALOULIY EMALOFPFF ADGPIGIFK IVSGAVTF5 IISOSCHEME HHALFVLALF FORLIGKOVA IDVTDF0FAK KVKOTVTLC GTPKTLAPEI ILSKYTMKAY DWUALOULIY IMAACHPFFF					
NORAAAARKO BEGESVEEL ARAEBPLEK WENPAGNTAN LOOFENITU GTOSFORML VEHNETONHY ANKILDKONV VELKOIEHTL NEKELLONN PFLUKLEFS FKNNSNLYMV HEYPOGAK SHLADIGEL ENKLEFLOL DILTETILS LDLITEOLKE BELLIDGOOY IQVTDYGRAK RUKGITUTLC GTPETLAFEI ILSKYTNKAV DWALOULIY ERAKOFPFF ADOFICIEK UNGKYTFJ HISODENDEL HINDLYDLIK FKOLKDKON DINNEKVAT					MU: 59DDD227D2DFFF5D CBC64:
VKHRETCHHY ARKILDRORV VELOCIENTL NEKRILGANN PFFLVRLEFS FRANSRLIVAN NEVPGORTS SHLBALCASE ENALGEVAL OLITETEINE ELLINDOOT IQVTDFORAR SWORTVILG OTPETLAREI ILSKYTNKAV DUWALOULIY EHALOPPFF ADOFICIEN IVSKYTVETS HISODEMELM HMENDVDLIK FORLINDON	~¥				
REVPOSCHY SHL <u>PLACES ENALEVIAC, ULTY</u> TLES LD.IYEDLER ENL.DGOGY IQVTDYGFAR RVKGHTWILC GTPEYLAPEI ILSKYNKAV DWUALGVLIY ERALGYPPFF ADQFIGTER IVSGK WTS ILSGERLEL FILL VILLER FORLEGIND DIRHKWFAT					
IQVTDFGFAR RVRG <mark>H</mark> TWTLC GTPEYLAPEI ILSK <mark>D</mark> YNKAV DWWALGVLIY EHAAGYPPFF Adqpiqiyek ivsg vrppp hposphyll rvll yvdltk rfgnlwngvn diknhkwfat		VARIATIONI	T ARAILD	COPS VALL	VIERIE REFEICAVR FFEVALETO FAURALINV
ADQPIQIYEK IVSGRVFFPS HPSSPLRDLE NHLLVDLTK RFGNLKNGVN DIKNHKWFAT					
INARTING APALITUCE ALANDED IFFERENCE I					
*		TPATATION	N VEAPFI	FAIR OFOL	TONLAR TERPORTAL NEW AND LARGE L

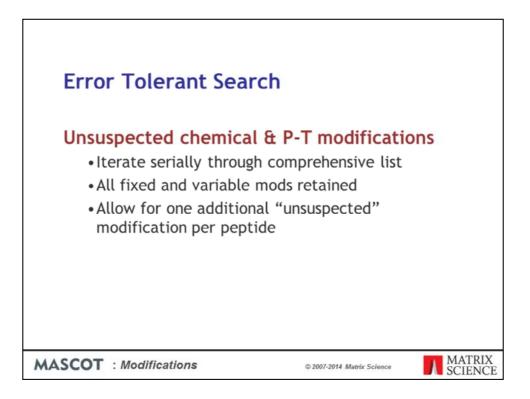
According to Swissprot, both T1 and T3 are possible phosphorylation sites. If you really needed to know which was the case here, or whether it was a mixture, you'd have to acquire more data. Maybe try a different enzyme or target the incomplete cleavage peptide that includes the preceding KG so as to move the sites towards the centre of the peptide, where you might get stronger b and y fragments



If you are using Mascot 2.3 or earlier, the delta score calculation is not performed in Peptide View. These are our suggested guidelines when using Mascot for site analysis:

If alternative sites differ by 20 in score, safe-ish to disregard lower one(s)

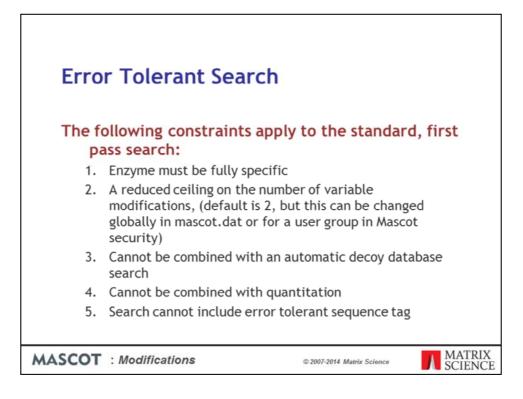
If alternative sites have similar scores, you may be able to choose one by inspection. But, be careful ... one peak is just one peak


Often, you just can't differentiate between adjacent sites, even with great data.

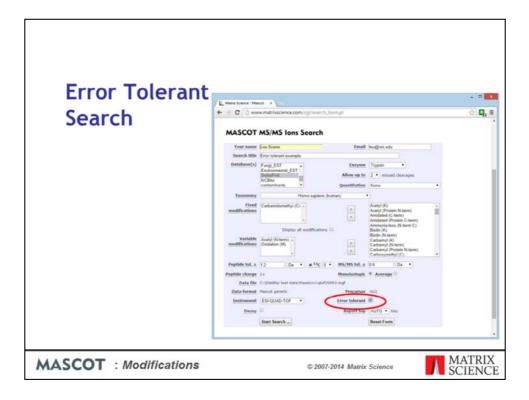
Now, back to the challenge of finding PT modifications. There are many hundreds of modifications in Unimod, yet I've emphasised the importance of using the minimum number of variable modifications in a search. So, how are we supposed to find unusual modifications?

If you are searching uninterpreted MS/MS data, the efficient way to find unusual modifications, as well as variations in the primary sequence, is a two pass search. The first pass search is a simple search of the entire database with minimal modifications. The protein hits found in the first pass search are then selected for an exhaustive second pass search. During this second pass search, we can look for all possible modifications, sequence variants, and non-specific cleavage products.

Because only a handful of entries are being searched, search time is not an issue. It would be extremely difficult to calculate meaningful statistics for the additional matches in an error tolerant search, and we don't report expect values. The evidence for the presence of any particular protein are the matches from the first pass search. The additional matches from the second pass search serve to increase coverage and may discover interesting modifications or SNPs.

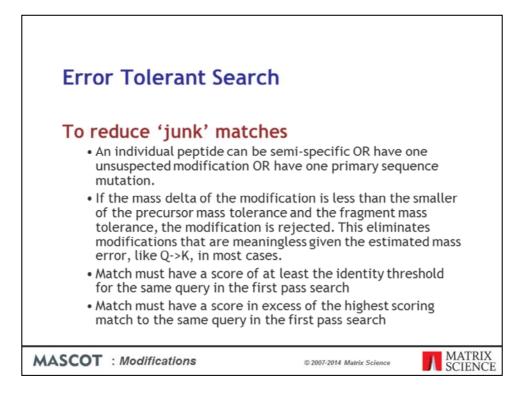


For modifications, an error tolerant search looks for one unsuspected modification per peptide in addition to those mods specified as fixed or variable. This is sufficient because it will be rare to get two unsuspected mods on a single peptide


Error Tolerant Search		
Primary sequence variants		
 Protein database 		
Look for all residue substitu	utions	
No attempt to identify sing deletions because of frame		ns &
 Nucleic acid database 		
Look for all single base subs & deletions	stitutions, inser	rtions
MASCOT : Modifications	© 2007-2014 Matrix Science	MATRIX SCIENCE

The error tolerant search also looks for sequence variants, such as single nucleotide polymorphisms (SNPs) or sequencing errors.

For a protein database, we can't look for the consequences of inserted or deleted bases, because these give rise to frame shifts, and the entire sequence changes from that point on.


There are some constraints on the standard, first pass search

Otherwise, submitting the search is just like submitting a standard search except that you check the Error Tolerant Checkbox

Select	AR	Select None			Error (_%2Fdat			915%2FFTgcfieOLdat
Select	rue	Select North	oearca	Selected	- Liroi (orer					
	P81_H		s: 58259	Score: 519				Sequenc		10(9)	
				stal type OS			Otheratio	PP PE+1 5	V*2		
	neck	to include	this hit in	error tole	rant sear	cn					
	very	Observed	Hr(expt)	Mr(calc)	Delta	Miss	Score	Expect	Rank	Unique	Peptide
1	27	462.6807	923.3468	923.5116	-0.1649	0	33	0.17	1		R. FPYVALSK. T
	41	517.1760	1032.3375	1032.5604	-0.2229	0	70	4e-05	2		R.GSSIFGLAPGR.A
8	52	545.6819	1089.3491	1089.5819	-0.2327	0	(53)		1		<pre>B.G551FGLAPGR.A + [+57.0215 at 52]</pre>
2	62	564,6804	1127,3463	1127.5764	-0.2301	0	10	32	1		R.GFFLFVEGGR.I
×	12		1133.2987		-0.2511	0	44	0.011	1		R.GNEVISVMNR.A + Oxidation (N)
8	46		1226.3856		-0.2473	0	27	0.56	1	U	K.LGPEIPLAUDR.F + Oxidation (M)
8	102		1304.4057		-0.2780	0	(#7)	5.8e-07	1		K. CNFQTIGLSAAAR. F
8	124		1418.4324		-0.2942 -0.3011		95 73	1.20-05	1		K_GNFQTIGLSAAAR.F = [<u>+114.0429</u> at N-term G] R.NHYSDADNPASAR.Q
2	133		1494.3828		-0.2866		88	1.26.03			L.DPSLHEHTEAALR.L + 2 Owidation (M)
8	136		1507.3582		-0.3109		(44)		-		R_NEYSDADVPASAR.Q + [+57.0215 at N-term N]
ŝ	145			1575,7814	-0.3418		(61)		-		R.ALTETINEDDALER.A + [-48.0000 at F8]
8	156				-0.3343		106	6.2e-09	-		R.ALTETIHFDDAIER.A + Oxidation (M)
8	165		1680,4474		-0.3554	8	(75)		1		R_ALTETINFODALER.A + Oxidation (M); [+41.0266 at N-term A]
2	170	864,2888	1726.5629	1726.9294	-0.3664	0	44	0.0092	1		K.AYTVLLYGNGPGYVLK.D
8	175	586.4951	1756.4635	1756.8420	-0.3786	0	(45)		1		G. 11PVEEENPOFUNR. E
10	176	879.2425	1756,4705	1756.8420	-0.3715	0	83		1		G. TEPVEEENPORING. E
8	179	593.4834	1777.4285	1777.7764	-0.3478	0	45		1		K.HVPDSGATATAYLCGVE.G + [+31,9357 at C-term K]
8	204	956.2437	1910.4729	1910.8601	-0.3872	0	30	0.23	1		R.OSTLDPSLMEMTEAALR.L + 2 Oxidation (M)
×	205		1949.6055	1950.0245	-0.4190	0	85	6.5e-07	1		K.MLIIFLGDGBGVSTVTAAR.I = Oxidation (M)
×	202		1950.4534		-0.4021	0	(27)	0.41	1		K.DGARPOVTESESGSPEYR.Q
8	211		1965.5039		0.6327	0	(72)		1		K.DGARPOVIESESGSPEYR.Q = [+14.0157 at TH]
8	213		1990.6336		-0.4174	0	(58)		1		<pre>W_NLIIFLGDGBGVSTVTAAR.1 + Oxidation (M); [+41.0266 at N-term N]</pre>
8 8	216	1001.2027	2000,3908	2000.8058	-0.4150	0	(67)	4.1e-05 4.9e-06	1	U	R.MGTPDPEYPDDYSQGGTR.L + Oxidation (M)
2	217		2000.3919		-0.4139	-	76	4.76.00	1	0	R.HGTPOPEYPDOYSQGGTR.L = Oxidation (M) K_DGARPOVTESESGSPEYR.Q = Acetyl (N-term); [=15,0109 at N-term 0]
2	222		2007,4400		0.6073		(61)			U	R_DGARPOVISESGAPETR.Q + Acetyl (N-term); [-12.0109 at N-term 0] R_MGTPDPEYPDOVSQGGTR.L + Acetyl (N-term); Oxidation (N); [-0.9540 at 67]
ŝ	224		2057.4016		-0.4256		(45)		-		R_MGTPDPEYPDDYSQGGTR.L + Oxidation (M); [+57,0215 at N-term M]
8	227		2131.7013		-0,4327	1	16	4.9	-	U	K.LGPEIPLAYDRFPVVALSK.T + Oxidation (M)
2	252		2350,6103		-0.4927		(69)		1	U	R_QOSAVFLDEETHAGEDVAVFAR_G + [-17,0265 at N-term 0]
8	253		2367,6341		-0.4954	0	94	7.4e-08	1	U	R.QQ5AVFLDEETHAGEDVAVFAR.G
8	260	809.2208	2424.6406	2425,1510	-0.5104		(66)		1	U	R_QQ5AVFLDEETHAGEDWAVFAR_G + [+57,0215 at N-term Q]
1	274	914,9160	2741.7263	2741.2306	0.4956		(41)		1		R.QEGCQDIATQLISMEDIDVILGGGR.K + Oxidation (N); [-79,9568 at C4]
ø	275	978 5878	2758 2415	3750 3583	-8 6167		- 64				# OFFCCONTATION TRANSPORTED FOR A Averal (Notema): Ovidation (N): 1-0 0476 at F21

And here is the first hit of the results report. The additional matches, found in the error tolerant search, are the ones without expect values. One of these, query 133, is a simple, non-specific peptide with a very good score. There's another example for query 176. The error tolerant search is a much better way of picking up non-specific peptides than searching the entire database with semi-trypsin or no enzyme. We only fail to get such matches in an error tolerant search if there are no matches to the protein in the first pass search. However, you have to ask yourself whether you would believe a protein hit in which the only peptide match was non-specific. I think the answer is no.

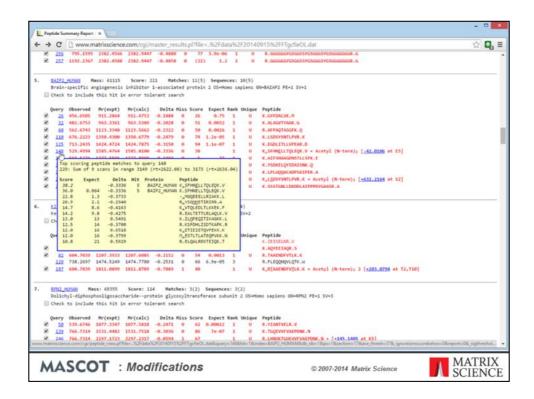
The matches from an error tolerant search are aggressively filtered to remove junk matches

Select	Al	Select Norw	e Search	Selected	Error t	olera	nt				o stoleti 🖌 o kuoletti		6
1		ne phosphat		Score: 519 stal type 05- error tole	+Homo sapl	lens		Sequence P PE+1 S		0(9)			
	very	Observed	Mr(expt)	Mr(calc)	Delta #	tiss	Score	Expect	Rank	Unique	Peptide		
8	22	462.6807	923.3468		-0.1649		33	0.17	1		R.FPYVALSK.T		
	41	517.1760	1032.3375		-0.2229	0	70	4e-05	2		R.GSSIFGLAPGK.A		
×	53	545,6819	1089.3491		-0.2327		(53)		1		R.0551FGLAPGK.A = [<u>+57.0215</u> at 52]		
8	52	564.6804	1127.3463	1127.5764	-0.2301	•	10	32	1		R.GFFLFVEGGR.1		
8	65		1133,2987		-0.2511	•	44	0.011	1		R.GNEVISVENR.A + Oxidation (M)		
8	.85	614.2001	1226.3856		-0.2473		27	0.56	1	U	K.LGPEIPLAEDR.F = Oxidation (M)		
8.8	100	653.2101	1304.4057	1304.6837	-0.2780	2	(87)	5.8e-07	1		K. GNEQTICLEARAR.F		
ŝ	126	726.1806		1418.7266	-0.3011			1.20-05			K_GNFQTIGLSAAAR.F + [<u>-114.0429</u> at N-term G] R.NHYSDADVPASAR.Q		
ŝ.	133		1494.3828		-0.2866						L.DPSLMEMTEAALR.L + 2 Oxidation (M)		
ŝ.	136		1507.3582		-0.3109	0	(44)				R_MMYSDADVPASAR.Q + [+57.0215 at N-term N]		
ã	145				-0.3418		(61)		1		R.ALTETINEDDAIER.A + [-48.C D at F8]		
8	156	820,7283	1639,4420	1639,7763	-0.3343	0	106	6.20-05	1		R.ALTETIBFDOALER.A + Oxidat		
8	165	841.2310	1680,4474	1680.8029	-0.3554		(75)		1		R_ALTETIMFDDAIER.A + Oxidat Possible Assignments:		
2	170	864.2888	1726,5629	1726.9294	-0.3664	0	44	0.0092	1		K.AYTVLLYGNGPGYVLK.D Carbamidomethyl (N-term) [+57.0215]		
æ	175	586.4951	1756,4635	1756.8420	-0.3786	0	(48)		1		G.IIPVEEENPDFWNR.E Carboxymethyl (N-term) [+57.0215]		
8	176	879,2425	1756.4705	1756.8420	-0.3715	0	63		1		G.IIPVEEENPOFUNR.E Delts:H(6)C(3)O(1) (Protein N-term) [+58.0419]		
×	179	593,4834	1777.4285	1777.7764	-0.3478	0	45		1		K.HVPDSGATATAYLCGVK.G + [+3		
×	204	956.2437	1910,4729	1910,8601	-0.3872	0	30	0.23	1	U	R.OSTLDPSLMEMTEAALR.L + 2 Oxidation (M)		
8	205	975,8100	1949.6055	1950.0245	-0.4190		85	6.5e-07	1		K.NLIIFLGDG%GVSTVIAAR.1 + Oxidation (M)		
ø	202	976.2340	1950.4534	1950.8555	-0.4021		(27)	0.41	1		K.DGARPOVTESESGSPEYR.Q		
8	211	656.1752	1965,5039	1964.8712	0.6327		(72)		1		K.DGARPDV <u>T</u> ESESGSPEYR.Q + [<u>+14.0157</u> at T8]		
8	213	664.5518	1990.6336		-0.4174	0	(58)		1		K_NLIIFLGDGMGVSTVTAAR.I + Oxidation (M); [+41.0266 at N-term N]		
8	216	1001.2027	2000.3908	2000.8058	-0.4150	•		4.1e-05	1	U	R.MGTPDPEYPDDYSQGGTR.L + Oxidation (M)		
8	217	667.8046	2000.3919	2000.8058	-0.4139	0	76	4.9e-06	1	U	R.BGTPDPEYPDDVSQGGTR.L + Oxidation (M)		
8	218	670.1561	2007.4466	2007.8770	-0.4304		75		1		<pre>K_DGARPOVTESESGSPEYR.Q + Acetyl (N-term); [+15,0109 at N-term D]</pre>		
8	222	681.8205	2042.4397	2041.8324	0.6073	•	(61)		1	U	<pre>#_HGTPOPEYPODVSQGGTR.L + Acetyl (N-term); Oxidation (H); [-0.9640 at E7]</pre>		
8	224	1029.7081	2057.4016	2057.8273	-0.4256		(45)		1	U	R_HGTPDPEYPDDVSQGGTR.L + Oxidation (M); [+57.0215 at N-term M]		
8.8	227	711.5744	2131.7013		+0.4327	1	16	4.9	1	0	K.LGPEIPLAUDRFPYVALSK.T + Oxidation (M)		
8.8	252	784.5440	2350.6103		-0.4927		(69)	7.44-08	1	U	R_QQSAVPLDEETHAGEDVAVFAR.G + [-17,9265 at N-term Q]		
8.8	253	190,2187	2367,6341 2424,6406	2368.1295	-0.4954		(66)	7.48-08	1		R. QQSAVPLDEETHAGEDVAVFAR.G		
8	250		2741.7263		0.4956		(41)		1		R_QQSAVPLDEETHAGEDVAVFAR.G + [=57.0215 at N-term Q] R.QEGCQDIATQLISNEDIDVILGGGR.K + Oxidation (N); [=79.9568 at C4]		
a.	1.70	030.0030	5370 3447	3350.3503	0.4000	-	(41)				R OPECODITION TOWNTOCION R + DESTIN (N); [172,2200 BC (4] R OPECODITION TOWNTOCION R + DESTIN (N-term): Oridation (N); [-0.9476 at F	1	
script	veid(5)					1			÷			1	

Take a look at the match to query 136. The mass tolerance for this search was fairly wide, so the observed mass difference could correspond to either carbamidomethylation or carboxymethylation at the N-terminus. Since this sample was alkylated with iodoacetamide, we would choose carbamidomethylation as the more likely suspect, especially as this brings the error on the precursor mass into line with the general trend, whereas carboxymethylation would give an error of +0.6 Da. The assignment to carbamidomethylation is also very believable, because this is a known artefact of over-alkylation. The same modification can be seen in this screen shot for three other queries

	C	🗈 www.m	atrixscience	.com/cgi/m	aster_res	ults.p	l?file-	%2Fdat	1%2F	201409	15%2FFTgcfieOL.dat	-	Q,
	65	567.6567	1133.2987	1133.5499	-0.2511	0	44	0.011	1		B.GNEVISVENR.A + Oxidation (H)		-0
2	85	614,2001	1226.3856	1226.6329	-0.2473		27	0.56	1	U	K.LGPEIPLANDR.F = Oxidation (M)		
2	100	653.2101	1304,4057	1304.6837	-0.2780	0	(87)	5.8e-07	1		K. CNFQTIGLSAAAR. F		
2	124	710.2235	1418,4324	1418.7266	-0.2942		95		1		K_CNFQTIGLSAAAR.F - [-114.0429 at N-term G]		
8	126	726.1806	1450,3465	1450.6477	-0.3011	.0	73	1.2e-05	1		R. NHYSDADVPASAR.Q		
2	123	499.1349	1494.3828	1494.6694	-0.2866	0			1		L.DPSLMEMTEAALR.L + 2 Omidation (R)		
2	126	754.6864	1507.3582	1507.6691	-0.3109		(44)		1		R_NWYSDADVPASAR.Q = [+57,0215 at N-term N]		
- 2	145	526.1538	1575.4396	1575,7814	-0.3418	٠	(61)		1		R.ALTETINEDDAIER.A + [_48.0000 at F8]		
2	156	820.7283	1639,4420	1639.7763	-0.3343	0	106	6.2e-09	1		R.ALTETIMFODAIER.A + Oxidation (M)		
- 92	165	841.2310	1680,4474	1680,8029	-0.3554	0	(75)		1		R_ALTETIMFDDAIER.A + Oxidation (M); [+41.0266 at N-term A]		
1	170	864.2888	1726.5629	1726.9294	-0.3664	0	44	0.0092	1		K.AYTVLLYGNGPGYVLK.D		
18	175	586,4951	1756,4635	1756,8420	-0,3766	0	(48)		1		G. IIPVEEENPDFUMR. E		
æ	176	879.2425	1756.4705	1756.8420	-0.3715	0	83		1		G. LIPVELENPOPUNE.E		
8		593,4834	1777.4285	1777.7764	-0.3478		45		1		K.HVPDSGATATAYLCOVE.G + [=31.5352 at C-term K]		
2	204	956.2437	1910.4729	1910.8601	-0.3872	0	30	0.23	1	U	R.OSTLDPSLMEMTEAALR.L + 2 Oxidation (M)		
R		975.8100	1949,6055	1950.0245	-0.4190		85	6.5e-07	1		K.NLIIFLODG@GVSTVTAAR.I = Oxidation (M)		
18		976.2340	1950.4534	1950.8555	-0.4021	0	(27)	0.41	1		K. OGARPENTESESGSPEVR. Q		
2		656,1752	1965.5039	1964.8712	0.6327		(72)		1		K.DGARPOVIESESGSPEYR.Q + [114.0157 at T8]		
R		664.5518	1990.6336	1991.0510	-0.4174	0	(58)		1		K_NEIIFLGDGBGVSTVTAAR.I + Oxidation (M); [+41.0266 at N-term N]		
8	215	1001.2027	2000.3908	2000.8058	-0.4150		(67)	4.10-05	1	U	R. MGTPDPEYPDDYSQGGTR.L + Oxidation (M)		
R		667.8046	2000.3919	2000.8058	-0.4139	0	76	4,9e-06	1	U	R.BGTPDPEYPDDYSQGGTR.L + Oxidation (M)		
×	218	670.1561	2007,4466	2007.8770	-0.4304		75				<pre>K_DGARPOVIESESGSPETR.Q + Acetyl (N-term); [+15,0109 at N-term 0]</pre>		
2	222	681.8205	2042,4397	2041.8324	0.6073	0	(61)		1	U	R_MGTPDPEVPDDYSQGGTR.L + Acetyl (N-term); Oxidation (M); [:0.2840 at E7]		
×		1029,7081	2057,4016	2057,8273	-0.4256	0	(45)		1	U	R_MGIPOPEYPDOYSQGGIR.L + Oxidation (M); [<u>+57,0215</u> at N-term M]		
2	227	711.5744	2131.7013	2132.1340	-0.4327	1	1.6	4.9	1	U	K.LGPEIPLAMORFPYVALSK.T + Oxidation (M)		
18		784.5440	2350.6103	2351.1030	-0.4927	0	(69)		1	0	R_QQSAVFLDEETHAGEDVAVEAR.G + [-17.0265 at N-term Q]		
×	253	790.2187	2367.6341	2368.1295	-0.4954	0	94	7.4e-08	1	U	R.QQSAVPLDEETHAGEDVAVFAR.G		
8			2424.6406		-0.5104	0	(66)		1	U	R_QQSAVFLDEETHAGEDVAVFAR.G + [+57.03		
2			2741.7263		0.4956	0	(41)		1		R.QEGEQDIATQLISMEDIDVILGGGR.K + Owid Possible Assignments:		
8.8			2758.7415 3232.8763		-0.6167 -0.6867		90	16	1		R_QECCQUARQLISHEDDVILGGR.K + Acet B.AGQLISEEDTLSLVTADHSHWISEGGYPLB.G	[2]	
8	281 PPRILE Alkeli	1078.6327	3232.8763 ss: 57626 tase, placer		-0.6867 Match	es: 2	10	Sequence	F: 15((#)		[2]	
	Query 22	Observed 462.6807	Mr(expt) 923.3468	Mr(calc) 923.5116	Delta -0.1649	0	33	0.17	1	Unique	Peptide R.FPYVALSK.T		
	41				-0.2229	0	70	48-05	2		R.OSSIFOLAPOK.A		
	52	245,6819	1087,3491	1089.5819	+0.2327	.0	(53)	1.1	1		R.0551F0LAPGK.A + [+57.0215 at 52]		
nstig	diversit(0)					1							
		-							_			ATF IEN	-

Another easily believable assignment is pyro-Glu for the match to query 252.


<pre>e d: StorAdd 113.3e9 113.3e9 123.4e9 -0.311 0 44 0.011 1 0.0007598.4 - 0.0141500 ()</pre>		C	www.m	atrixscience	e.com/cgi/m	aster_resi	ults.p	?file=	_%2Fdat	1%2F	201409	915%2FFTgcfieOL.dat 🔂 🛃 🛙
<pre>P 120 45.200 13.00.407 130.407 120.200.20 10 (07) 5.0-07 1 t. CONTINUESSAULT. # 151.5222 4t %*term 6] 121 497.2014 145.200 - 0.2014 0 (07) 1.2.001 1 (07) 121 497.100 145.100 145.100 10 (07) 121 497.100 145.100 145.100 10 (07) 121 497.100 145.100 145.100 10 (07) 121 497.100 145.100 145.100 10 (07) 121 497.100 145.100 145.100 145.100 10 (07) 121 497.100 145.100</pre>	1	65	567.6567	1133.2987	1133.5499	-0.2511	0	44	0.011	1		R.GNEVISV9NR.A + Oxidation (H)
Q 12 210.225 148.022 448.024 448.720 -0.242 0 0 0 1 export[TLELAMA.F1 - 2 Oxidation (T) Q 12 210.110 140.720 150.7401 0 12.1200 150.7401 0 12.1200 Q 12 210.110 150.7401 0 0 1 1.07410000000000000000000000000000000000	2		614.2001	1226.3856	1226.6329	-0.2473		27	0.56	1	U	K.LGPEIPLAUDR.F - Oxidation (M)
Q 112 09:100 14:00:00 12:00:00:00 12:00:00:00 12:00:00:00 12:00:00:00 12:00:00:00 12:00:00:00 12:00:00:00 12:00:00:00 12:00:00:00 12:00:00:00 12:00:00:00 12:00:00:00 12:00:00:00 12:00:00:00 12:00:00:00 12:00:00:00 12:00:00:00 12:00:00:00 12:00:00:00 12:0		100	653.2101	1304,4057	1304.6837	-0.2780	0	(87)	5.8e-07	1		K. CNEQTICLEANAR. F
Q 11 09.140 140 54.040 15.		124	710.2235	1418,4324	1418.7266	-0.2942		95		1		K_GNFQTIGLSAAAR.F - [-114.0529 at N-term G]
Q 15 556.4664 1087.582 1557.584 -0.3100 0 (44) 1 B.ANTINGROMSSAD.47 (557.681) -0.500 15 Q 155 1557.584 557.584 -0.5148 0 06 0.200 1 B.ANTINGROMSSAD.47 -0.5200 eff 61 Q 155 412.5 1557.584 -0.5554 0 64 0.002 1 B.ANTINGROMSSAD.47 -0.644cine (70) [s1.0256] eff 8-term A] Q 125 557.584 -0.5554 0 44 0.002 1 B.ANTINGROMSSAD.47 -0.644cine (70) [s1.0256] eff 8-term A] Q 125 557.4705 1757.474 -0.5756 0 3 1 -11PERTIFERENTIAL - 0.064cine (70) [s1.0252] eff C-term E] Q 125 575.4705 1559.4707 -0.4707 0 80 0.33 1 0 1.571444555 1.570.4714 1.57144 0.5114741000007VTAAL : -0.51445100(0) 0.5714741000007VTAAL : -0.51445100(0) 0 0.57147400007VTAAL : -0.51445100(0) 0 0.57147400007VTAAL : -0.51445100(0) 0 0.57147400007VTAAL : -0.5144510000000 0 0.511							0		1.2e-05	1		
<pre>8 135 325-1354 1357.439 1357.734 4.5.348 0 (61) 1 1 8.ATTINEDALTS.4 [-1, 12, 0020 et f8] 135 487.738 1507.430 1507.734 -0.3480 0 (65 0.2-09 1 8.ATTINEDALTS.4 = Oxidation (7) 14 125 544.7318 1507.436 1367.438 -0.3556 0 (75) 1 8.ATTINEDALTS.4 = Oxidation (7) 15 125 544.731 1356.438 1757.546 -0.3568 0 (44) 1 0 A.TIVETINEDALTS.4 = Oxidation (7) 15 12 1354.438 1757.546 -0.3568 0 (44) 1 0 A.TIVETINEDALTS.4 = Oxidation (7) 15 12 1354.438 1757.546 -0.357 0 (44) 1 0 A.DIVETINEDALTS.4 = Oxidation (7) 15 22 1354.438 1757.546 -0.357 0 (44) 1 0 A.DIVETINEDALTS.4 = Oxidation (7) 15 22 1354.438 177.746 -0.347 0 (48) 1 1 A.TIVETINEDALTS.4 = Oxidation (7) 15 22 1354.438 177.746 -0.347 0 (48) 0 .2 1 0 B.DITUTINEDALTS.4 = Oxidation (7) 15 22 1354.438 177.746 -0.347 0 (48) 0 .2 1 0 B.DITUTINEDALTS.4 = Oxidation (7) 15 22 1354.438 177.746 -0.347 0 (48) 0 .2 1 0 B.DITUTINEDALTS.4 = Oxidation (7) 15 22 1354.438 177.746 -0.347 0 (48) 0 .2 1 0 B.DITUTINEDALTS.4 = Oxidation (7) 15 22 1354.438 177.746 -0.347 0 (48) 0 .2 1 0 B.DITUTINEDALTS.4 = Oxidation (7) 15 22 1354.438 177.746 -0.347 0 (20) 8 4 5.5.407 1 E B.DITUTINEDALTS.4 = Oxidation (7) 15 22 1350.431 1340.355 0 -0.4114 0 (27) 8.4 1 E.COMPUTINEDALTS.4 = Oxidation (7) 15 21 1606.4558 1906.053 1964.4712 0 0.577 0 (20) 1 E B.DITUTUTINEDALTS.4 = Oxidation (7) 15 21 667.558 0 00.359 2000.0008 -0.4124 0 (58) 1 E E.E.E.E.E.E.E.E.E.E.E.E.E.E.E.E.E.E</pre>		123	499.1349	1494.3828	1494.6694	-0.2866	0			1		L.DPSLEEMTEAALR.L + 2 Omidation (R)
0 15 482-7283 1609-4420 1509-7783 -0.3143 0 100 6.02-09 1 R_ATTINEDROMERAL + Outdation (N) 0 155 442-208 1720-5620 1726-529 1726-529 -0.3064 0 44 0.0002 1 R_ATTINEDROMERAL + Outdation (N) [sil_0266 st N=term A] 0 125 586-7497 1726-5620 1726-5429 -0.3064 0 44 0.0002 1 R_ATTINEDROMERAL + Outdation (N) [sil_0266 st N=term A] 0 125 586-7497 1726-5620 1726-5440 0.0.3175 0 68 3 1 6.11PETINEDROMERAL + 2 Outdation (N) 0 125 586-7497 1596-6780 1766-6440 0.0.3175 0 68 5.5=07 1 1.05115F149810700.41. + 2 Outdation (N) 0 120 1956-6780 1950-6030 1950-6337 0 6172 0.41 1 1.05115F149810700.41. + 2 Outdation (N) 0 121 006-1735 1956-6780 1956-6335 0.950 -0.4337 0 6172 0.41 1 1.05115F1498107000420717A8.1 + 0.0144 1 1.011671010000717A8.1 + 0.0144 1 0 121 006-1735 1956-6780 1956-6335 0.900-079 - 0.4139 0 7.5 4.990 1 1.001671000000718.4 + 0.0144 1 1.011671000000718.4 + 0.0144 1 1.011671000000718.4 + 0.0144 1 1.011671000000718.4 + 0.0144 1 1.011671000000718.4 + 0.0144 1 1.011671000000718.4 + 0.0144 1 1.011671000000718.4 + 0.0144 1 1.011671000000718.4 + 0.0144 1 1.011671000000718.4 + 0.0144 1 1.011671000000718.4 + 0.01144 1 1.011671000000718.4 + 0.0116710000000718.4 +										1		
0 120 641.210 120 641.210 120 641.210 120 641.210 120 641.210 120 641.210 120 641.210 120 641.210 120 641.210 120 641.210 120 641.210 120 641.210 120 641.210 120 641.210 120 641.210 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 121 120							٠					
0 122 564.2885 1725.529 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0</td> <td></td> <td>6.2e-09</td> <td>1</td> <td></td> <td></td>							0		6.2e-09	1		
0 122 595.4053 175.4439 575.4439 6.1197ETSMORDANE.E 0 125 577.4245 175.4439 777.424 0.5175 6 5 1 F.INTESMORDANE.E 0 125 577.4245 175.4409 177.7424 0.5175 6 5 1 F.INTESMORDANE.E 0 125 577.4500 1596.4534 1607.4107 1597.414 1608.111 161.4026.418.15.1197.416.4107 1596.414 158.456777777777777777777777777777777777777							0			1		
0 125 979-245 1759-2490 1759-2490 1759-2490 1759-2490 1759-2490 1759-2490 1759-2490 1759-2490 1759-2490 1759-2490 1759-2490 1759-2490 1759-2490 1759-2490 1759-2490 1500-2492 1510-2							0		0.0092	1		
0 12 99.4844 177.488 178.487 17										1		
0 221 055.247 198.0479 198.0479 198.0479 198.0479 198.0479 198.0479 198.0479 198.0479 198.0479 198.0479 198.0479 198.0479 198.0479 198.0479 198.0479 198.0479 198.0479 198.0455 198.0455 198.0455 198.0455 100.017 100.017 100.0000000000000000000000000000000000							0			1		
<pre>2 22 07.100 199.003 190.0245 -0.419 0 0 3 0.57-07 1 K.NIFFLOODDNYTFAR.1 - 0.414tim (N) 2 22 07.2146 190.0255 07.0245 -0.413 0 (2) 2 21 100.1751 090.031 191.0310 -0.4137 0 (2) 2 1 100.1751 090.031 191.0310 -0.4137 0 (2) 4 11 00.1751 090.031 191.0310 -0.4137 0 (2) 4 11 00.1751 090.031 191.0310 -0.4137 0 (2) 4 11 00.1751 090.031 191.0310 -0.4137 0 (2) 4 11 00.1751 090.031 191.0310 -0.4137 0 (5) 4 11 00.1751 090.031 191.0310 -0.4137 0 (5) 4 11 00.1751 090.031 191.0310 -0.4137 0 (5) 4 11 00.1751 090.031 191.0310 -0.4137 0 (5) 4 11 00.1751 090.031 191.0310 -0.4137 0 (5) 4 11 00.1751 090.031 191.0310 -0.4137 0 (5) 4 11 00.1751 090.031 191.0310 -0.4137 0 (5) 4 11 00.1751 090.031 191.0310 -0.4137 0 (5) 4 11 00.1751 090.031 191.0310 -0.4137 0 (5) 4 11 00.1751 090.031 191.0310 -0.4137 0 (5) 4 11 00.1751 090.031 191.0310 -0.4137 0 (5) 4 12 00.1751 090.031 190.0418 -0.4139 0 (5) 4 11 00.1751 090.0181 -0.4140 0 (5) 4 10 00.1751 090.0181 -0.4140 0 (5) 4 10 00.1751 090.0181 -0.4140 0 (5) 4 10 00.1751 090.0181 -0.4140 0 (5) 4 10 00.1751 090.0181 -0.4140 0 (5) 4 10 00.1751 090.0181 -0.4140 0 (5) 4 10 00.1751 090.0181 -0.4140 0 (5) 4 10 00.1751 090.0181 -0.4140 0 (5) 4 10 00.1751 090.0181 -0.4140 0 (5) 4 10 00.1751 090.0181 -0.4140 0 (5) 4 10 00.1751 090.0181 -0.4140 0 (5) 4 10 00.1751 090.0181 -0.4140 0 (5) 4 10 00.1751 090.0181 -0.4140 0 (5) 4 10 00.17</pre>							•	-		1		
0 202 979-2340 959-4534 <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td>•</td> <td></td> <td></td> <td>1</td> <td>0</td> <td></td>		_					•			1	0	
0 211 006.1752 1980.1009 1990.												
0 211 665-518 1990.6336 1991.635 0 643 1 w.R.11FL00000571VPV0075005R.1.+ 0.0164 Postble Assignments: 0 212 667.8065 2000.0395 2000.0985 -0.4159 0 8.0017097V0007505R.1.+ 0.0164 Postble Assignments: 0 212 667.8065 2000.0935 2000.0935 0.6159 0 8.0017097V0007505R.1.+ 0.0164 Postble Assignments: m.0) 0 212 677.805 2007.0970 -0.6155 0 6.0157 0 8.0017097V0007505R.1.+ 0.0164 Postble Assignments: m.0) 0 222 677.805 2007.0970 -0.6155 0 6.015 0 8.0017097V0007505R.1.+ 0.0164 Postble Assignments: m.0) .5590 at C7] 1.590 at C7] 1.560 at C7] 1.574 at C7] 1.517 at C7] 1.590 at C7] 1.590 at C7] 1.560 at C7] 1.574 at C7] 1.517 at C7] 1.520 at C7] 1.517 at C7] 1.520 at C7] 1.517 at C7] 1.520 at C7] 1.520 at C7] 1.517 at C7] 1.520 at C7] 1.520 at C7] 1.520 at C7] 1.520 at									0.41	1		
0 212 610.2077 2000.2080 2000.2083 0.4130 0 4.90100144000000000000000000000000000000												
Q 222 642.6865 2000.3913 2000.4935 00014 76 4.90-06 1 0 8.001709710705500578.1.0 0.1611 10.1614.057											1.0	
0 210 000.0000 2000.0000 000.00000 000.00000 000.00000 000.00000000000 000.000000 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>3</td><td></td><td></td></t<>										3		
0 222 001.8095 2002.4197 2001.		_							4,96-00		.0	
222 1027.0012 0027.0012												
0 222 711.5744 213.7083 213.108 -0.4327 1 15 4.8 1 0 K.LOPETPAQDEPTVALES, 4 Main [] [[12.2021] 0 232 782.5440 235.0180 -0.4027 1 15 4.8 1 0 K.LOPETPAQDEPTVALES, 4 [[12.2021] 15 12 Registration = state							0			2		
0 212 788.5440 2350.6190 2351.1000 -0.6927 0 69) 1 0 R.QQSLAVIDETIMECEDVARAB.6 + [.] 2 252 788.5460 2352.376.6.09 2351.376.0 -0.6955 0 9 R.QQSLAVIDETIMECEDVARAB.6 + [.] -0.6927 0 R.QQSLAVIDETIMECEDVARAB.6 + [.] -0.6927 R.QSLAVIDETIMECEDVARAB.6 + [.] -0.69276 252 0.000 -0.69276 0 1 R.QGSLAVIDETIMECEDVARAB.6 + [.] -0.69276 252 0.000 R.QCSLAVIDETIMECEDVARAB.6 + [.] R.QSLAVIDETIMECEDVARAB.6 + [.] R.RQSLAVIDETIMECEDVARAB.6 + [.] R.RQSLAVIDE											100	
2 252 290-2187 2287.0341 2264.2295 -0.4954 0 91 7.4-988 1 0 R.OGSANTDOETIMACTOWARA.6 2 252 920-2187 2724.2205 2261.2205 221 1 R.OGSANTDOETIMACTOWARA.6 1 R.OGSANTDOETIMACTOWARA.6 2 222 920-9100 2741.7205							-		4.9			
2 226 208.7208 224.6460 245.510 -0.5104 0 66) 1 U R_QOSAVIDETINECTOMENTATION (= [127.0212] at N=term 0] 2 24 93.0100 271.2200 0.055.00 (41) 1 N_COSAVIDETINECTOMENTATION (= [127.0212] at N=term 0] 2 225 200.5878 2758.7415 2759.5582 -0.6157 90 1 N_COSCAVID(123080010VII(GGGR.K + Accetyl (N=term)) 0xidation (N)) [_129.5258 at [2] 2 211 1078.6127 2222.8750 223.5678 2552.967.61 223.5678 -0.6167 90 1 R_COSCAVID(123080010VII(GGGR.K + Accetyl (N=term)) 0xidation (N)) [_129.5258 at [2] 2 211 1078.6127 223.2876 233.562 -0.6167 0 16 1 R_COSCAVID(13080010VII(GGGR.K + Accetyl (N=term)) 0xidation (N)) [_129.5258 at [2] 2 211 1078.6127 232.876 233.5627 -0.6167 0 16 1 R_COSCAVID(13080010VII(GGGR.K + Accetyl (N=term)) 0xidation (N)) [_129.5258 at [2] 16 1 R_COSCAVID(13080010VII(GGR.K + Accetyl (N=term)) 0xidation (N)) [_129.5258 at [2] 16 1 R_COSCAVID(13080010VII(GGR.K + Accetyl (N=term)) 0												
02 224 914.0140 2741.7240.72400.7440.74.1400.7440 2741.7440.7400.7400.74.1400.74									7.46.08		-	
213 928.5878 2759.7455 2759.7582 -0.6667 9 9 1 R_QGCCQDATQCISMEDDUTLGGGE.K + Acetyl (N-term)) Oxidation (N); [.0.9526 at E2] 211 1078.6327 3232.8763 3233.5659 -0.6667 0 16 1 R_AQGUCQDATQCISMEDEDUTLGGGE.K + Acetyl (N-term)) Oxidation (N); [.0.9526 at E2] 221 1078.6327 3232.8763 3233.5659 -0.6667 0 16 1 R_AQGUCQDATQCISMEDEDUTLGGGE.K + Acetyl (N-term)) Oxidation (N); [.0.9526 at E2] 221 1050.6327 3232.8763 3233.5659 -0.6667 0 16 1 R_AQGUTATQCISMEDEDUTLGGGE.K + Acetyl (N-term)) Oxidation (N); [.0.9526 at E2] 221 1050.6327 3232.8763 3233.5659 -0.6667 0 16 1 R_AQGUTATQCISMEDEDUTLGGE.K + Acetyl (N-term)) Oxidation (N); [.0.9526 at E2] 23 450.607 70.1567 10 10 16 1 R_AQGUTATQCISMEDUTLGGE.K + Acetyl (N-term)) 16 1 16 1 24 450.607 70.1567 30 3 17 1 1.677741256.7 1 1 16 1 1 1 1 1 1 1							1			1		
211 10776.6327 3233.5629 -0.6667 0 16 1 R.AcQUISEEDTLSLVTADHSMMTSFGOVFLE.6 2201 MSUSS 7462 Score: 362 Matches: 27(8) Sequences: 15(8) 4lbaline phosphataxe, placental-like OS-Homo: saplane: GU-ALPPL2 PE-1 SV-4 Check to include this hit in error tolerant search Query Observed Pr(cept) Pr(calc) Delta Riss Score: Expect Rank Unique Peptide 22 402.6007 923.5186 -0.1404 0 31 0.17 1 R.FVFMLSE.T 31 517.1700 1023.5075 1023.5084 -0.227 0 70 4e-05 2 R.0537FGLAUGK.A 31 545.617 1089.518 1089.5287 -0.227 0 70 4e-05 2 R.0537FGLAUGK.A												
Alkaline phosphetase, placental-like Od-Homon Saplans GM-ALPPL2 PE-1 SV-4 Check to include this hit in error tolerant search Query Observed Mr(capt) Mr(calc) Delta Miss Score Expect Bank Unique Peptide 12 402.6807 922.1040 933.5116 -0-1660 0 33 0.17 1 R.FPVEALSK.T 13 517.1706 1023.0375 1022.5064 -0-2227 0 0 70 4e-05 2 R.GSIFF0LAPGK.A 13 545.6817 1020.4818 1089.5815 -0.227 0 (53) 1 R.GSIFF0LAPGK.A									16	1		
22 445.6487 923.5446 923.5116 -0.1669 9 3 0.17 1 R.FWYMARG.T 31 517.1766 102.5757 102.5647 642.95 2 R.0551704406.1A 32 545.6431 1089.5491 1089.5451 -0.2327 0 (53) 1 R.0551704406.1A	888	274 275 281 ecen_m Alkali	920.5878 1078.6327 (2537) Mas ne phosphat	2758.7415 3232.8763 is: 57626 iase, placer	2759.3582 3233.5629 Score: 362 stal-like 05	-0.6167 -0.6867 Match +Hono sap	iens	(41) 90 10	Sequence	15	(8)	R.QEGCQDIATQLISNEDIDVILGGGR.K + Oxidation (M); [<u>-79.9568</u> at C4] R_QEGCQDIATQLISNEDIDVILGGGR.K + Acetyl (N-term); Oxidation (M); [<u>-0.9476</u> at E2]
41 517,1700 1052,3375 1052,5604 -0.2229 0 70 4e-05 2 R.0551F0LAPOK.A 51 545.6819 1089,5819 -0.2327 0 (53) 1 R.0551F0LAPOK.A	,						Miss			Rank	Unique	
52 545.6419 1089.3491 1089.5819 -0.2327 0 (51) 1 R.055190LAPGK.A + [+57.0215 at 52]							0			1		
									48-05	2		
por pt ved(0)			345,6819	1089,3491	1089.5819	+0.2327		(53)				#:0251F0LAPOK:A + [<u>*27:0212</u> at 52]
	ncipt	+0+0(0)					1					

As is methylation ay T8 for query 211


. 7	C	🗋 www.m	atrixscience	.com/cgi/m	aster_resi	alts.p	l?file=	_%2Fdata	1%2F	201409	915%2FFTgcfieOLdat 😥 🛃 🗉
	65	567.6567	1133.2987	1133.5499	-0.2511	0	44	0.011	1		R.GNEVISV9NR.A + Oxidation (H)
8		614.2001	1226.3856	1226.6329	-0.2473		27	0.56	1	U	K.LGPEIPLAMOR.F = Oxidation (M)
8	100	653.2101	1304,4057	1304.6837	-0.2780	0	(#7)	5.8e-07	1		K. GNFQTIGLSAAAR. F
2	124	710.2235	1418,4324	1418.7266	-0.2942		95				K_GNFQTIGLSAAAR.F - [-114.0429 at N-term G]
×.	126	726.1806	1450,3465	1450.6477	-0.3011	0	73	1.2e-05	1		R. NRYSDADVPASAR.Q
2	122	499.1349	1494.3828	1494.6694	-0.2866	0	88		1		L.DPSLEEMTEAALR.L + 2 Oxidation (R)
1	126		1507.3582		-0.3109	0	(44)		1		R_MMYSDADVPASAR.Q + [+57,0215 at N-term N]
8	145	526.1538	1575.4396	1575,7814	-0.3418	٠	(61)		1		R.ALTETIMEDDAIER.A + [_48.0000 at F8]
8	156		1639,4420	1639.7763	-0.3343	0	106	6.2e-09	1		R.ALTETIMFODALER.A . Oxidation Law
8	165		1680,4474	1680.8029	-0.3554	0	(75)		1		R_ALTETINFDOATER.A + Oxidation Possible Assignments: [# A]
×	170		1726.5629		-0.3664	0	44	0.0092	1		K.AYTVLLYGAGPGYVLK.D
8	175	586,4951	1756,4635		-0,3766		(48)		1		G.IIPVEEENPDFWNR.E Phe->Val (F) [-48.0000]
æ	176		1756.4705		-0.3715	0	#3		1		G. TIPVELENPOPUNR. E
8	179		1777.4285		-0.3478	•	45		1		K.HVPDSGATATAYLCGVg.G = [-31.9352 at C-term K]
8	294		1910.4729	1910.8601	-0.3872	•	30	0.23	1	0	R.OSTLDPSLMEMTEAALR.L + 2 Oxidation (M)
8	201		1949,6055		-0.4190	•	85	6.5e-07	1		K.NLIIFLGDGGOVSTVTAAR.I = Oxidation (M)
8	2.9.2		1950.4534		-0.4021	0	(27)	0.41	1		K. DGARPONTESESGSPEVR. Q
8	211	696,1792			0.6327	•	(72)				K.DGARPDVIESESGSPEYR.Q = [<u>=14.0157</u> at T#]
8	213	664.5518	1990.6336	1991.0510	-0.4174		(58)		1		K_NLIIFLGDGHGVSTVTAAR.I + Oxidation (M); [+41.0266 at N-term N]
8	215	1001.2027	2000.3908	2000.8058	-0.4150			4.1e-05	1		R.BETPOPEYPOOTSQGETR.L = Oxidation (M)
8	217	667.8046	2000.3919	2000.8058	-0.4139	•	76	4.9e-06	-	. U	<pre>#.HGTPDPEYPDDYSQGGTR.L + Oxidation (#)</pre>
8	218	670.1561	2007,4466	2007.8770	0.4304		75		1		<pre>k_QGARPDVTESESGSPEYR.Q + Acetyl (N-term); [+15.0109 at N-term 0]</pre>
8	222	681.8205	2042,4397	2041.8324	0.6073	0	(61)			U	R_HGTPDPEvPDOvSQGGTR.1 + Acetyl (N-term); Oxidation (H); [-0.2840 at E7]
8.8	224	1029,7081	2057,4016	2057.8273 2132.1340	-0.4256		(45)	4.9			R_HETPOPEYPOOYSQUEER.L + Oxidation (M); (+57,0215 at N-term M)
ŝ	227	784,5440	2350,6103	2351.1030			(69)	4.9			K.LGPEIPLAMORFPYVALSK.T + Oxidation (M)
8	253		2367,6341		-0.4927		94	7.40-08			R_QQSAVFLDEETHAGEDVAVFAR.G + [-17.0265 at N-term Q]
2	260		2424.6406	2425,1510	0.5104		(66)	1.46.08			R.QQSAVFLDEETHAGEDVAVFAR.G R_QQSAVFLDEETHAGEDVAVFAR.G + [+57,0215 at N-term 0]
ŝ	274	914,9160	2741.7263		0.4956		(41)				R.QEGCQDIATQLISMEDIDVILGGGR.K + Oxidation (M); [+79,9568 at C4]
ĩ	275		2758.7415		-0.6167		90				R_QEGCQDIATQLISMEDIDVILGGGR.K + Acetyl (N-term); Oxidation (M); [_0,9476 at E2]
8	261		3232.8763		-0.6867	0	10	16	1		R.AGQLISEEDILSLVTADHSHVFSFGGYPLR.G
		ne phosphat		Score: 362 stal-like 05 error tole	+Hono sap	iens		Sequences PPL2 PE+1		8)	
3	Query 22	Observed 462.6807	Mr(expt) 923.3468	Mr(calc) 923.5116	Delta -0.1649	Miss	Score	Expect 0	Rank	Inique	Peptide R.#PYVALSK.T
	41	517.1760	1032.3375		-0.2229	0	70	44-05	2		R. 0551F0LAPOK, A
	53				+0.2327	0	(53)		1		R.0551F0LAPOK.A + [+57.0215 at 52]
noiet	V040(0)						1.0	144			C 100 C 100 C

In other cases, the match may be good, but the assignment is not believable. Query 145 is listed with a substitution at F8 causing a loss of 48 Da. This seems unlikely because we have 2 other matches to the same peptide without any substitution. What else could it be? Well, notice that the other two matches are both oxidised at M7. If we suppose this peptide is also oxidised, then the mass shift becomes -64, which is a well-known loss for oxidised methionine, (loss of methanesulfenic acid). This would seem a much more likely explanation for this match.

It is important to understand that the error tolerant search finds new matches by introducing mass shifts at different positions in the database sequences. The match may be very strong, but figuring out a credible assignment can require a bit of detective work.

You should also look at the other matches to the same query when trying to decide whether to accept a match or not. In this search, Acetyl (N-term was a variable modification. The error tolerant search got the highest score for this spectrum by including this modification and at the same time subtracting 42 Da at E5. Much more believable to take the original match from the first pass search, which is a match to the unmodified peptide with a slightly lower score

In summary, an error tolerant search

•Can successfully locate mass differences corresponding to a single unsuspected modification or a single SNP per peptide

•User must decide on best explanation for the observed differences

•Limited to proteins which have at least one good peptide match ... not very useful for (say) MHC peptides