

This is the Mascot result report for a peptide mass fingerprint search. There is a list of proteins, each of which matches some of the experimental peptide masses, but the report tells us that these matches are not statistically significant. The score threshold for this search is 76, and the top scoring match is 47. The graph is a histogram of the scores of the top ten matches and, as you see, all of them are in the area shaded green to indicate random, meaningless matches.

What exactly do I mean by probability based scoring?

We calculate, as accurately as possible, the probability that the observed match between the experimental data, and mass values calculated from a candidate peptide or protein sequence, is a random event.

The real match, which is not a random event, then has a very low probability.

We can then reject anything with a probability greater than a chosen threshold, e.g. 1%

Why is probability based scoring important?

Well, how else would you judge whether a protein hit in a peptide mass fingerprint search was meaningful?

In the case of MS/MS data, it is very difficult to judge whether a match is significant or not by looking at the spectrum. Let me illustrate this with an example

• ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●	$ \frac{1}{9} 1$	Image: Second		Street 2						
Newsistingtic maps of newtral applies M(ready): 1300.0064 Fixed medicinations: 13350glass (0, 17850glass (0+read), Mrthylikho (C) (apply to specified residence or termini unity) Mass Secret: 35 Depend: 1 Matches: 12/70 V Jama 6cc/15 Sale 10 943.346(17) Dispect: 1 V Jama 6cc/15 Sale 10 944.178 Dispect: 1 V Jama 6cc/15 Sale 10 943.346(17) Dispect: 1 V Jama 6cc/15 Sale 10 943.346(17) Dispect: 1 V Jama 6cc/15 Sale 10 944.178 Dispect: 1 V Jama 6cc/15 Sale 10 94.172.1007 V Jama 6cc/15 Sale </th <th>Menolatologic mass of method peptide Mr(cAdp): 1300-004 Freed medicinations: ITA/DQUIES (0),ITA/DQUIES (0),ITA</th> <th>Menoistangic mano of mentral peptide HF(r4d): 1130:0064 Freed multitudium: 1TAGAptine: (0,1TABAptine: (0+ram, Menbylikhin (C) (spply to specified cenidose or termini unity) freed Secret 35 Repert 1 Hattbee : 11/70 Eraputek (and waing 22 most intense peaks (sp) 4 Secret 25 Secret 25 Secret 1 1 Secret 25 Secret 25</th> <th>🚖 🕸 🛞 • 🍎 Marcot Search Results: Pr</th> <th>pt 🌮 Mascut Search Results: P 🗶</th> <th></th> <th></th> <th></th> <th></th> <th>∰ • ⊕ • ∰top</th> <th>e = 🛈 Tark = 😝</th>	Menolatologic mass of method peptide Mr(cAdp): 1300-004 Freed medicinations: ITA/DQUIES (0),ITA/DQUIES (0),ITA	Menoistangic mano of mentral peptide HF(r4d): 1130:0064 Freed multitudium: 1TAGAptine: (0,1TABAptine: (0+ram, Menbylikhin (C) (spply to specified cenidose or termini unity) freed Secret 35 Repert 1 Hattbee : 11/70 Eraputek (and waing 22 most intense peaks (sp) 4 Secret 25 Secret 25 Secret 1 1 Secret 25	🚖 🕸 🛞 • 🍎 Marcot Search Results: Pr	pt 🌮 Mascut Search Results: P 🗶					∰ • ⊕ • ∰top	e = 🛈 Tark = 😝
B 927 5631 464 2852 909 5526 455 2799 E 554 3004 267 6538 517 2738 259 1466 516 2898 258 6485 3 9 1041.6663 521 3047 1024 5955 512 3044 102 3955 512 3014 N 405 2578 201 3125 308 2312 184 6493 2	4.4	0 -	Monoisotopic mass of neutral p Fixed modifications: 17840tpl Ions Score: 35 Expect: 1 Matches : 12/70 firspect ions	eptide Mr(calc): 1330.8064 x (K),1TRAQ4plex (N-term), using 22 most intense peak	Rethylthio (= (<u>heig</u>) Seq y V <i>V</i> 1098.643	y** y* 544.8252 1071.6166	y*** 536.3120.1 486.7777.5	5 ⁰ 5 ⁰⁺⁺ 8 10 070.6326 535 8199 9 971 5642 486 2857 8		

This match has a good number of matches to y and b ions, highlighted in red. All the major peaks above 200 Da seem to be labelled. Could such a good match have occurred by chance?

You cannot tell, because you can match anything to anything if you try hard enough.

If this sounds strange, here's a simple analogy. If I say that I was tossing a coin and got ten heads in a row, does that mean there was something strange about the coin, like it had two heads? You cannot tell, because you need to know how many times I tossed the coin in total. If I picked it up off the table, tossed it ten times, then put it down, yes, that would suggest this was not a fair coin. However, if I tossed it ten thousand times, I would expect to get ten heads in a row more than once.

So, it isn't just a matter of how good the match is, i.e. how many y or b ions you found, it's a case of how hard you tried to find the match. In the case of a database search, this means how large is the database, what is the mass tolerance, how many variable modifications, etc., etc. These are very difficult calculations to do in your head, but they are easy calculations for the search engine.

If we look at the expectation value for this match, it is 1. That is, we could expect to get this match purely by chance. It looks good, but it's a random match.

A DOUT AND AND A DOUT	Carlonat Carl						
🔍 😳 🔹 🖉 Maicut Search Results: P	Maior Search Results: Pepti.					9·#	• 🔄 Expi + 🔘 Tarki + 📵
(D4,40%) (D4,40%) (D4,10%)	61% 004						
tonoisotopic mass doneutral peo	tide Mr(calc): 1330.806	4					
ans Score: 60 Expect: 3.1e-005 fatches : 17/82 fragment ions up	ing 22 most intense pea	des (<u>belg</u>)	y***	++ھي ھي			
1 244.1778 122.5925	V Seq. y	y** y*	y	y" y".			
2 343.3462 172 1267	V 1098.6132 544	18252 1071 6164	6 536 3120	1070 6326 535 819			
3 456.3302 228 6688	L 989.5748 495			971 5642 486 285			
	1 \$76.4997 438	8 7490 859.464	2 430 2357	858.4801 429.743	8		
4 569.4143 285.2108							
4 569.4143 285.2108 5 626.4358 313.7215		2.2070 746.380	1 373.6937	745.3961 373.201	7 7		
	G 763.4066 383			745 3961 373 201 688 3746 344 690			
5 626.4358 313.7215 6 741.4627 371.2350 723.4521 36 7 828.4947 414.7510 810.4842 40	G 763.4066 383 2.2297 D 706.3852 353 5.7457 S 593.3582 296	3 6962 689 358 6 1828 574 331	6 345 1830 7 287 6695		9 6 5 5		
5 626.4358 313.7215 6 741.4627 371.2350 723.4521 36 7 828.4947 414.7510 810.4842 40 8 885.5162 443.2617 867.5056 43	G 763.4066 382 2.2297 D 706.3852 353 5.7457 S 593.3582 296 4.2565 G 504.3262 253	3.6962 689.358 5.1828 574.331 2.6667 487.299	6 345 1830 7 287 6695 7 244 1535	688 3746 344 690	6 5 5 4		
5 626 4358 313.7215 6 741.4627 371.2350 723.4521 36 7 828.4947 414.7510 810.4842 40 8 855.5162 443.2617 107.5056 43 9 94.5846 492.7959 966.5740 48	G 763.4066 383 2 2297 D 706.3852 353 5.7457 S 593.3582 296 4 2565 G 504.3262 253 3.7907 V 447.3047 246	8.6962 689.358 6.1828 574.331 2.6667 487.299 4.1560 430.278	6 345 1830 7 287 6695 7 244 1535 2 215 6427	688 3746 344 690	6 5 4 3		
5 626.4358 313.7215 6 741.4627 371.2350 723.4521 36 7 828.4947 414.7510 810.4842 40 8 885.5162 443.2617 867.5056 43	G 763.4066 380 2.2297 D 706.8152 353 5.7457 S 591.3582 294 4.2565 G 504.3262 253 3.7907 V 447.3047 294 2.3014 G 348.2263 174	3.6962 689.358 5.1828 574.331 2.6667 487.299	6 345.1830 7 287.6695 7 244.1535 2 215.6427 8 166.1085	688 3746 344 690	6 5 5 4		

If I show you a better match, then it is easy to dismiss the previous one as inferior. We can all make that judgement very easily. This match has an expectation value of less than 1 in 10,000. It is definitely not random.

The challenge is, what if you don't have the better match to compare against? Maybe this sequence wasn't in the database. If you only had the inferior match, how would you decide by looking at it whether it was significant or not?

The other interesting question is whether this is the "correct" match. Who can say that a better match isn't possible, where we get the last y ion or some more of the b ions fall into line?

If we use probability based scoring, we can apply standard, statistical tests of significance to the results.

If we don't do this, then the only way to know the level of false positives is a target decoy search, and this isn't always possible, e.g. when searching a small number of spectra

Probability based scoring calculates the probability that the match is random. This is, the probability that the match is meaningless. Many people ask whether we can report the probability that the match is correct. Is this possible?

It is certainly possible if you are analysing a known protein or standard mixture of proteins. If you know what the sequences are, or think you know, then the matches to the known sequences are defined to be correct and those to any other sequence are defined to be wrong. If the sample is an unknown, then it is difficult even to define what is meant by a correct match.

		ń	07.1649	c/mascot/cgi/m	1212.5258	-0.2116	0100	70	0.015			☆ ⁴
		-	31.6960		1212.5258	-0.2116	0	69	0.015			DITSDTSGDFR TFAQFDADELR
			94.2543		1386,7606	-0.2677	0	73	0.0065			GVDEATIIDILTK
		_		1542.5800	1542.8617	-0.2816	ĩ	46	3.6			GVDEATIIDILTER
			47.4901		1639.7689	-0.3220	1	(41)	11			DLAKDITSDTSGDFR
			20.7467		1639.7689	-0.2911	1	52	0.85			DLAKDITSDTSGDFR
			51.7657	1701.5157	1701.8784	-0.3627	0	82	0.00085	1		GLGTDEDTLIEILASR
	1	25 1	70.2109	1738.4061	1738.7281	-0.3220	0	82	0.00092	2	U	SEDFGVHEDLGDSDAR + Methyl e
1	2	2	76.9243	1903.6658	1904-0254	-8.3596	1	22	9.961005	1		AAYLQETGKPLDETLKK
	1			peptide mate					4	2		AAMKGLGTDEDTLIEILASR + Oxid
	v 1	Scor	greate:	r than 64 11	dicates 1de	intity				1		QAWFIENEEQEYVQTVK + Pyro-gl
	2 1	Scer				tein	Pept			1		QAWF IENEEQEYVQ TVK
	7 1	99.				10347940				1		GGPGSAVSPYPTFNPSSDVAALHK
		82.0		092 -0.322		10348033						
0.0		45.		4 -0.34		1 103 45301						n to many contractor and
2.												
	91	24.						ASINM	LRDCR	ces: 11	(7) er	mPAI: 1.63
	601	23.	7.4e+	002 0.480	01		LIPV	EALDS	LR <u>DC</u> R EGKQQR	ces: 11	(7) er	mPAI: 1.63
			9 7.4e+	002 0.480	15		LIPV ECPT	GLINL	LR <u>DC</u> R EGKQQR MRPSK	ces: 11	(7) e	mPAT: 1.63
	601	23. 21. 20. 20.	0 7.4e+ 9 9.4e+ 5 1.3e+ 4 1.3e+	002 0.480 002 0.544 003 0.620 003 -0.30	01 45 55 78		LIPV ECPY CPCN ECVR	EALDS GLINL CLLIC ECEWV	LR <u>DC</u> R EGKQQR MRPSK KDTSR CAR	ces: 11	(7) e	mPAI: 1.63
	601	23. 21. 20.	0 7.4e+ 9 9.4e+ 5 1.3e+ 4 1.3e+	002 0.480 002 0.544 003 0.620 003 -0.307 003 0.580	01 45 65 78 05		LIPV ECPY CPCN ECVR	GLINL CLLIC	LR <u>DC</u> R EGKQQR MRPSK KDTSR CAR SWSSR		(7) en Unique	Peptide
	601 Che Que	23. 21. 20. 20. 19.	0 7.4e+ 9 9.4e+ 5 1.3e+ 4 1.3e+ 7 1.6e+ 07.1649	002 0.480 002 0.544 003 0.624 003 -0.307 003 0.580 1212.3142	01 45 55 78 05 1212,5258	-0.2116	LIPV ECPY CPCN ECVR	EALDS GLINL CLLIC ECEVV ESLVA 70	LRDCR EGKQQR MRPSK KDTSR CAR SWSSR 0.015	Rank		Peptide DITSDTSGDFR
	601 Che Que	23. 21. 20. 20. 19.	0 7.4e+ 9 9.4e+ 5 1.3e+ 4 1.3e+ 7 1.6e+ 607.1649 631.6960	002 0.480 002 0.544 003 0.620 003 -0.307 003 0.586 1212.3142 1261.3763	01 45 55 78 05 1212.5258 1261.5938	-0.2175	LIPV ECPY CPCN ECVR CRVS	CLLIC CLLIC CLLIC CLLIC CLLIC CLUIC CCUIC	LRDCR EGROOR MRPSK KDTSR CAR SWSSR 0.015 0.015	Rank		Peptide DITEDTSGDFR TPACFDADELR
	601 Che Que	23. 21. 20. 20. 19.	0 7.4e+ 9 9.4e+ 5 1.3e+ 4 1.3e+ 7 1.6e+ 507.1649 531.6960 194.2543	002 0.480 002 0.544 003 0.624 003 -0.30 003 0.580 1212.3142 1261.3763 1306.4929	1212.5258 1261.5938 1386.7606	-0.2175 -0.2677	LIPV ECPY CPCN ECVR	ELDS GLINL CLLIC ECEWV ESLUA 70 69 73	LRDCR EGKOOR MRPSK KDTSR CAR SWSSR 0.015 0.005	Rank		Peptide DITSDTSCOFR TPACFDADELR GVDEATIIDILTK
	601 Che Que	23. 21. 20. 20. 19. 19. 53 53 69	0 7.4e+ 9 9.4e+ 5 1.3e+ 4 1.3e+ 7 1.6e+ 807.1649 531.6960 194.2543 515.2012	002 0.480 002 0.544 003 0.624 003 -0.307 003 0.580 1212.3142 1261.3763 1366.4929 1542.5800	1212.5258 1261.5938 1386.7606 1542.0617	-0.2175 -0.2677 -0.2816	LIPV ECPY CPCN ECVR CRVS	GLINL GLINL CLLIC ECEWV ESLWA 70 69 73 46	LRDCR EGKQQR MRPSK KDTSR CAR SWSSP 0.015 0.015 0.015 0.015 0.0065 3.8	Rank		Peptide DITSDTSGOFR TPAGTADELR GVDEATIDITK GVDEATIDITKR
	601 Che Que	23. 21. 20. 19. 15. 53. 69. 91.	0 7.4e+ 9 9.4e+ 5 1.3e+ 4 1.3e+ 7 1.6e+ 07.1649 531.6960 194.2543 515.2012 547.4901	002 0.480 002 0.544 003 0.624 003 -0.30 003 0.580 1212.3142 1261.3763 1386.4929 1542.5800 1639.4469	21 15 55 78 1212.5258 1261.5938 1386.7606 1542.8617 1639.7689	-0.2175 -0.2677 -0.2816 -0.3220	LIPV ECPY CPCN ECVR CRVS	ZALDS GLIHL, CLLIG ZCEWV ZSLVA 69 73 46 (41)	LRDCR EGKQQR MRPSK KDTSR CAR SWSSP 0.015 0.015 0.015 0.015 0.0065 3.8	Rank 1 1 1 1 1 1 1 1 1		Peptide DiTutTGOFFR TPAGFDADELR GVDEATIDILTR GVDEATIDILTRR DLANDITUTGGOFFR
	601 Che Que	23. 21. 20. 19. 19. 52 52 69 61 21 26	0 7.4e+4 9 9.4e+4 5 1.3e+4 4 1.3e+4 7 1.6e+4 607.1649 631.6960 194.2543 515.2012 547.4901 520.7467	002 0.480 002 0.544 003 0.62 003 -0.30 003 0.580 1212.3142 1261.3763 1386.4929 1542.5800 1639.4469 1639.4778	21 15 15 15 12 12 12 12 12 12 12 12 12 12	-0.2175 -0.2677 -0.2816 -0.3220 -0.2911	LIPV ECPY CPCN ECVR CRVS 0 0 1 1 1	ZALDS GLIHL CLLIC ZCEWW ZSLWA 70 69 73 46 (41) 52	LRDCR EGKQQR MRPSK KDTSR CAR SWSSP 0.015 0.0065 3.6 13 0.85	Rank 1		Peptide DITSDIGOFR TPAOTDADELR GVDEATIDILTN GVDEATIDILTN DLANDITSDIGOFR DLANDITSDIGOFR
	601 Che Que	23. 21. 20. 20. 19. 52 52 52 52 52 52 52 52 52 52 52 52 52	0 7.4e+4 9 9.4e+4 5 1.3e+4 4 1.3e+4 7 1.6e+4 607.1649 631.6960 194.2543 515.2012 547.4901 820.7467 851.7657	002 0.480 002 0.542 003 -0.307 003 0.580 1212.3142 1261.3763 1366.4929 1542.5800 1639.4469 1639.4778 1701.5157	21 15 55 78 1261.5938 1386.7606 1542.6617 1542.6617 1542.6617 1542.7669 1542.7669 1542.7669 1542.7679	-0.2175 -0.2677 -0.2816 -0.3220 -0.2911 -0.3627	LIPV ECPY CPCN ECVR CPVS 0 0 1 1 1 1	ZALDS: GLIML CLLIG ECEWV ESLWA 70 69 73 46 (41) 52 82	LRDCR EGKQQR MRPSK EDTSR CAR SWSSR 0.015 0.0065 3.6 13 0.85 0.00085	Rank 1 1 1 1 1 1 1 1 1		Peptide DISSISSOFR TPAGPADELR GVDEATIDITE OVDEATIDITE DLARDITSDTSOFR DLARDITSDTSOFR DLARDITSDTSOFR DLARDITSDTSOFR
	603 Che Que	23. 21. 20. 20. 19. 52 52 52 52 52 52 52 52 52 52 52 52 52	0 7.4e+ 9 9.4e+ 5 1.3e+ 4 1.3e+ 7 1.6e+ 07.1649 531.6960 94.2543 515.2012 647.4901 920.7467 851.7657 570.2109	002 0.480 002 0.544 003 0.62 003 -0.30 0.580 1212.3142 1261.3763 1366.4929 1542.5800 1639.4469 1639.4778 1701.5157 1738.4061	21 15 15 15 15 12 12 12 15 13 13 13 15 15 15 15 15 15 15 15 15 15	-0.2175 -0.2677 -0.2816 -0.3220 -0.2911 -0.3627 -0.3220	LIPV ECPY CPCN ECVR CRVS 0 0 1 1 1	ZALDS: GLIML, CLLIG ZCEWV ZSLWA 20 69 73 46 (41) 52 82 99	LRDCR EGKQQR BRPSK KDTSR CAR SWSSR 0.015 0.015 0.015 0.015 0.015 0.015 0.015 1.8e-005	Rank 1 1 1 1 1 1 1 1 1		Pepile DITUTNOFF TRAFDARLR GVDEATIDILTK DLAKDITUTNE DLAKDITUTNOFF DLAKDITUTNOFF DLAKDITUTNOFF BLAKDITUTNOFF SGUTTEDILAT
	601 Che Que	23. 21. 20. 20. 19. 52 52 52 52 52 52 52 52 52 52 52 52 52	0 7.4444 9 9.4444 5 1.3444 4 1.3444 1.3644 107.1649 101.6960 194.2543 515.2012 147.4901 120.7467 151.7657 170.2109 176.9243	002 0.480 002 0.544 003 0.62 003 0.62 003 0.580 1212.3142 1261.3763 1386.4929 1542.5800 1639.4469 1639.44769 1639.4775 1738.4061 1903.6658	21 15 15 12 12 12 12 12 13 13 13 13 13 13 13 13 13 13	-0.2175 -0.2677 -0.2816 -0.3220 -0.2911 -0.3627 -0.3220 -0.3596	LIPV ECPY CPCN ECVR CPVS 0 0 1 1 1 1 0 0 1	ZALDS GLIHL, CLLIC ECENV ESLVA 70 69 73 46 (41) 52 82 99 22	LPDCR ECKOOR MPSK KNTSR CAR SESSR 0.015 0.	Rank		Peptide DITSDIGOFR TPAOPDADELR GVDEATIDILTK GVDEATIDILTK DLAKDITSDIGOFR DLAKDITSDIGOFR GLATDETLILLAR SEFOVMEDLADDAR AATLGETOXPLDETLIKK
	601 Che Que	23. 21. 20. 19. 19. 12. 12. 12. 12. 13. 14. 14. 14. 14. 14. 14. 14. 14. 14. 14	0 7.4e+4 9 9.4e+4 5 1.3e+4 4 1.3e+4 7 1.6e+4 107.1649 109.1649 109.1649 109.2543 515.2012 147.4901 120.7467 151.7657 170.2109 176.9243 107.2170	002 0.400 002 0.544 003 0.624 003 0.624 003 -0.307 0.580 1212.3142 1261.3763 1366.4929 1642.5800 1639.4469 1639.4778 1701.5157 1738.4061 1903.6658 2118.6299	21 45 55 78 1212.3258 1261.5938 1362.7609 1542.8617 1639.7689 1639.7689 1701.8784 1738.7281 1904.0254 2119.0830	-0.2175 -0.2677 -0.2816 -0.3220 -0.2911 -0.3627 -0.3220 -0.3596 -0.4532	LIPV ECPY CPCN ECWR CPVS 0 0 1 1 1 1 1 0 0 1 1	ZALDS GLIHL, CLLIC ECENV ESLVA 70 69 73 46 (41) 52 82 99 22 35	LPDCP ECROOR MPPSK KDTSP CAR 0.015 0.0065 3.6 11 0.0065 3.6 1.1 0.0065 3.6 1.1 0.005 0.00065 1.8=005 9.9e+002	Rank		Peptide Diffeotedopr Tragtback Gvoeatibite Diakoitedtedopr Diakoitedtedopr Diakoitedtedopr Guttedtititian Sepformeeladdar Aatloctorputtik
	601 Che Que	23. 21. 20. 20. 19. 52 52 52 52 52 52 52 52 52 52 52 52 52	0 7.4444 9 9.4444 5 1.3444 4 1.3444 1.3644 107.1649 101.6960 194.2543 515.2012 147.4901 120.7467 151.7657 170.2109 176.9243	002 0.400 002 0.544 003 0.624 003 0.624 003 -0.300 1212.3142 1261.3763 1366.4929 1542.5800 1639.4469 1639.44769 1639.4769 1701.5157 1738.4061 1903.6658 2118.4290 2122.6372	21 15 15 12 12 12 12 12 13 13 13 13 13 13 13 13 13 13	-0.2175 -0.2677 -0.2816 -0.3220 -0.2911 -0.3627 -0.3220 -0.3596	LIPV ECPY CPCN ECVR CPVS 0 0 1 1 1 1 0 0 1	ZALDS GLIHL, CLLIC ECENV ESLVA 70 69 73 46 (41) 52 82 99 22	LPDCR ECKOOR MPPSK KNTSR CAR SUSSR 0.015 0	Rank 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Peptide DITSDIGOFR TPAOPDADELR GVDEATIDILTK GVDEATIDILTK DLAKDITSDIGOFR DLAKDITSDIGOFR GLATDETLILLAR SEFOVMEDLADDAR AATLGETOXPLDETLIKK

This is a typical MS/MS search result, where we see a series of high scoring homologous peptides. The sequences of the top four matches are very similar, and their expectation values vary from random through to very unlikely to be random. The best match has an expectation value of 2E-5. However, we cannot be sure that this is an identity match to the analyte peptide. It is simply the best match we could find in the database. There is always the possibility that a better match exists, that is not in the database, so to call it the correct match would be misleading.

The important thing is that we have a mechanism to discard matches that are nothing more than random matches.

It is a similar situation in Blast, except that you have the luxury of seeing when you have a perfect identity match. Here, the identity match has an expectation value of 1E-6, which reminds us that it would be a random match if the database was a million times larger. The match with one different residue is not worthless, it has an expectation value of 1E-5 and is a very good match. It just isn't as good a match as the one above.

If we are doing probability based matching, we are not scoring the quality of the spectrum, we are scoring whether the match is random or not.

Even when the mass spectrum is of very high quality, if the peptide is so short that it could occur in the database by chance, then you will not get a very good score.

The situation in a Blast search is identical. Even though this is a perfect identity match, the expectation value is 48. This is just a random match. Hence, the earlier tip to discard spectra from low mass precursors.

For a peptide mass fingerprint, there is just one score that matters: the protein score. This tells us whether the match is significant or not, and is determined by calculating the probability of getting the observed number of peptide mass matches if the protein sequence was random.

For an MS/MS search, we have two scores. The important one is the peptide match score or ions score. This is the probability of getting the observed number of fragment ion mass matches if the peptide sequence was random.

However, most people are interested in which proteins are present, rather than which peptides have been found. So, we assign peptide matches to protein hits and provide protein scores for MS/MS searches, so that the proteins with lots of strong peptide matches come at the top of the report.

However, it is very important to understand that the protein score in an MS/MS search is not statistically rigorous. It is just a way of ranking the protein hits.

This is why there is no expect value for the protein score in an MS/MS search, and why there is a short explanation at the top of every report.

Because a Mascot score is a log probability, assigning a significance threshold is very simple. It is just a function of the number of trials - the number of times we test for a match. For a peptide mass fingerprint, this is the number of entries in the database. For an MS/MS search, it is the number of peptides in the database that fit to the precursor mass tolerance. For an enzyme like trypsin, and a reasonable mass tolerance, this number will be less than the number of entries in the database. For a no-enzyme search, the number of trials will often be more than the number of entries in the database.

So, for example, if we are comfortable with a 1 in a 20 chance of getting a false positive match, and we are doing a PMF search of a database that contains 500,000 entries, we are looking for a probability of less than $1 / (20 \times 500,000)$ which is a Mascot score of 70

If we could only tolerate a false positive rate of 1 in 200 then the threshold would be 80, 1 in 2000 90, etc.

For MS/MS searches with trypsin, and a reasonable mass tolerance, the numbers tend to be lower. The default identity threshold is typically a score of around 40

Unfortunately, MS/MS spectra are often far from ideal, with poor signal to noise or gaps in the fragmentation. In such cases, it may not be possible to reach the identity threshold score, even though the best match in the database is a clear outlier from the distribution of random scores. To assist in identifying these outliers, we also report a second, lower threshold for MS/MS searches; the 'homology' threshold. This simply says the match is an outlier.

In practice, from measuring the actual false positive rate by searching large data sets against reversed or randomised databases, we find that the identity threshold is usually conservative, and the homology threshold can provide a useful number of additional true positive matches without exceeding the specified false positive rate.

In Mascot 2.0, we also started displaying an expect or expectation value in addition to the score

The expectation value does not contain new information. It can be derived directly from the score and the threshold. The advantage is that it tells you everything you need to know in a single number.

It is the number of times you could expect to get this score or better by chance.

A completely random match has an expectation value of 1 or more

The better the match, the smaller the expectation value.

The most important attributes of a scoring scheme are sensitivity and specificity. That is, you want as many correct matches as possible, and as few incorrect matches as possible.

This is often illustrated in the form of a Receiver Operating Characteristic or ROC plot. This plots the relationship between the true positive and false positive rates as the threshold is varied. The origin is a very high threshold, which lets nothing through. At the top right, we have a very low threshold, that allows everything through. Neither extreme is a useful place to be. The diagonal represents a useless scoring algorithm, that is equally likely to let through a false match as a true one. The red curve shows a useful scoring algorithm, and the more it pushes the curve up towards the top left corner, the better. Setting a threshold towards this top left corner gives a high ratio of correct matches to false matches.

A few years ago, there was a little too much focus on sensitivity and not enough consideration given to specificity, so that some of the published lists of proteins were not as accurate as the authors might have hoped.

A growing awareness of this problem led to initiatives from various quarters. Most notably, the Editors of Molecular and Cellular Proteomics, who held a workshop in 2005 to define a set of guidelines, which has just recently been revised.

For large scale studies, there is a requirement to estimate your false discovery rate. One of the most reliable ways to do this is with a so-called decoy database

This is very simple but very powerful. You repeat the search, using identical search parameters, against a database in which the sequences have been reversed or randomised. You do not expect to get any real matches from the decoy database. So, the number of matches that are found in the decoy database is an excellent estimate of the number of false positives in the results from the target database.

You'll read a lot of discussion in the literature about whether the decoy sequences should be reversed or randomised; whether to search a single database containing both target and decoy sequences or separate databases. I suggest the most important thing is to do a decoy search; any decoy search. What you need to know is whether your level of false positives is 1% or 10% or 100%. Its less of a concern whether its 1% or 1.1%.

Although this is an excellent validation method for large data sets. It isn't useful when you only have a small number of spectra, because the numbers are too small to give an accurate estimate. Hence, this is not a substitute for a stable scoring scheme, but it is an excellent way of validating important results.

On our public web site there is a help page devoted to decoy database searches. It includes a download link to a utility program that allows you to create a randomised or reversed database. If you have an early version of Mascot, or if you want to verify the results from another search engine, you can use this utility to create a decoy database for searching.

Because more and more people wish to perform decoy searches routinely, we've added this into Mascot as a built-in part of the search. If you choose the Decoy checkbox on the search form, then every time a protein or peptide sequence from the target database is tested, a reversed or randomised sequence of the same length is automatically generated and tested. The average amino acid composition of the random sequences is the same as the average composition of the target database. The matches and scores for the decoy sequences are recorded separately in the result file. The result is identical to searching a separate database rather than a concatenated database.

rotein Family Summary				☆ <mark>-</mark>
Filter Significance thresh Ions score or expe Show Percelator so Preferred taxonom	ct cut-off 0 Dendrograms cut cores		Auto(help)	
Decoy search summary (rever Peptide matches - above identity threshold - above identity or homology becoy results are available in athe	in target in Decoy FDR 19070 534 2.80% threshold 19096 537 2.81%	Adjust to	15. •	
Proteins (2710) Report Buil	ider Unassigned (21128)			permalio
			la.	
Protein families 1–10 (or 10 • per page 1 2 2 Accession • contains •	4 5 6 - 221 Isent Expand		re all Find	
Protein families 1–10 (or 10 • per page 1 2 2	4 5 6 - 221 Heat Expand 2::FAS2_YEAST 1 2::EN02_YEAST 2 2::EN01_YEAST	3819 3526	, m See all Find Farty acid synthese subunit alpha OB=Sacharomyces carenisae (strain ATCC 284508 / 5280c) Oly=FA52 PE+1 5V=2	
Protein families 1-10 (or 10 • per page 1 2 2 Accession • contains • 1 2	B B C ZZI Heast Expand 2::FAS2_YEAST 1 2::EN02_YEAST 2 2::EN01_YEAST 4 2::HSSP72_YEAST 4 2::HSSP72_YEAST 2 2::ENSP72_YEAST 3 2::GRP78_YEAST 3 2::GRP78_YEAST 3 2::GRP78_YEAST	3819 3526 2106 3450 1281 3371	Feffs and synthese suburit alpha OS-Sectementses care-crise (strain ATCC 204508 / 5286) (0H-FA52 PE+1 SV+2 Proles 2 OS-Sectementses care-crise (strain ATCC 204508 / 5286) (0H-FA52 PE+1 SV+2 Broles 1 OS-Sectementses care-crise (strain ATCC 204508 / 5286) (0H-FA54 PE+1 SV+2 Broles 1 OS-Sectementses care-crise (strain ATCC 204508 / 5286) (0H-S542 PE+1 SV+2 Broles 1 OS-Sectementses care-crise (strain ATCC 204508 / 5286) (0H-S542 PE+1 SV+2 Broles 1 OS-Sectementses care-crise (strain ATCC 204508 / 5286) (0H-S542 PE+1 SV+2 Broles 1 OS-Sectementses care-crise (strain ATCC 204508 / 5286) (0H-S542 PE+1 SV+2 Broles 1 OS-Sectementses care-crise (strain ATCC 204508 / 5286) (0H-S542 PE+1 SV+2 Broles 1 OS-Sectementses care-crise (strain ATCC 204508 / 5286) (0H-S542 PE+1 SV+2 Broles 1 OS-Sectementses care-crise (strain ATCC 204508 / 5286) (0H-S542 PE+1 SV+2 Broles 1 OS-Sectementses care-crise (strain ATCC 204508 / 5286) (0H-S542 PE+1 SV+2 Broles 1 OS-Sectementses care-crises (strain ATCC 204508 / 5286) (0H-S542 PE+1 SV+2 Broles 1 OS-Sectementses care-crises (strain ATCC 204508 / 5286) (0H-S542 PE+1 SV+2 Broles 1 OS-Sectementses care-crises (strain ATCC 204508 / 5286) (0H-S542 PE+1 SV+2 Broles 1 OS-Sectementses care-crises (strain ATCC 204508 / 5286) (0H-S542 PE+1 SV+2 Broles 1 OS-Sectementses care-crises (strain ATCC 204508 / 5286) (0H-S542 PE+1 SV+2 Broles 1 OS-Sectementses care-crises (strain ATCC 204508 / 5286) (0H-S542 PE+1 SV+2 Broles 1 OS-Sectementses care-crises (strain ATCC 204508 / 5286) (0H-S542 PE+1 SV+2 Broles 1 OS-Sectementses care-crises (strain ATCC 204508 / 5286) (0H-S542 PE+1 SV+2 Broles 1 OS-Sectementses care-crises (strain ATCC 204508 / 5286) (0H-S542 PE+1 SV+2 Broles 1 OS-Sectementses (strain ATCC 204508 / 5286) (0H-S542 PE+1 SV+2 Broles 1 OS-Sectementses (strain ATCC 204508 / 5286) (0H-S542 PE+1 SV+2 Broles 1 OS-Sectementses (strain ATCC 204508 / 5484 Broles 1 OS-Sectementses Broles 1 OS-Sectementses Br	

When the search is complete, the statistics for matches to the decoy sequences are reported in the result header. If you change the significance threshold, the numbers are recalculated. In Mascot 2.4 and later, there is a button to adjust the significance threshold so as to achieve a chosen FDR value. For example, if we choose 1% FDR using the homology threshold

Protein Family Summary			0140916%2FF001295.dat_selected_fdr=1_sigthreshold=0.010851 었
Filter Significance threat Ions score or expe Show Percolator s Preferred taxonom	ct cut-off 0 Dendrograms co		AUTO ====================================
Decoy search summary (reve Peptide matches above identity threshold above identity or homologo Decoy results are available in other Proteins (2604) <u>Report Buil</u> Protein families 1–100 (ob	in target in Decoy FOR 17362 170 6.585 1706 1772 1.70 1.004 a decoy report. ider Unassigned (21372) ut of 2604)	Adjust to	(15,* •)
10 • per page 1 2 2 1 Accession • • contains •	4 5 6 - 201 (Jent) Expan		Find
•1	2::FAS2_YEAST		Patty acid synthase subunit alpha OS+Saccharomyces cerevisiae (strain ATCC 204506 / 3288c) 0N+FA52 PE+1 9V+2 Evalase 2 OS+Saccharomyces cerevisiae (strain ATCC 204506 / \$288c) 0N+81x02 PE+1 9V+2
² -	1 2::ENO2_YEAST 2 2::ENO1_YEAST	1804	Enelese 1.05+Sascharsmyces serviniae (strein ATCC 204508 / 5286c) 0N+ENOS FE+1 SV+3
2	2 2::ENO1 YEAST	2882	Brules 1 05-Sastharsmytes carevisiae (strain ATCC 20450 / 5286) 01+EDG3 FE+1 5V+3 Pyruvate kinase 1 05+Sastharsmytes carevisiae (strain ATCC 20450 / 5286) 01+ECCC19 FE+1 5V+2 Pyruvate kinase 2 05+Sastharsmytes carevisiae (strain ATCC 20450 / 5286) 01+EVS2 FE+1 5V+3

The significance threshold has been automatically adjusted from 0.05 to 0.01.

Why do we get these false positives? Do they reflect some defect in the search engine? Let's have a closer look. If you click the link here, then you will see the results from searching the randomised database.

	ecoy Sumn	nary							
Ions s	cance threshold core or expect o Percolator score	cut-off 0	0851 Max. n Dendro	umber of fam ograms cut at		UTO	5	e(halp)	
Return to the original	report								
Proteins (172)	Report Builder	Unassign	ned (43564)	1					5 permalink
	2_YEAST	6 Score	8 Random sec		equences				
	2_YEAST leset of 2::HSI	68 PB2_YEAST	81356	16 (3)	11 (3)	Random	Incus:	ia.	
▶1 sam ▼16 peptide matche	eset of 2::HSI	P82_YEAST	81356	16 (3)		Kandom	14Quer	na.	
 ▶1 sam ▼16 peptide matche Ø Auto-fit to windo Query Dopes 	eset of 2::HSI	PB2_YEAST cate, 4 dupli Mr (expt)	81356 cate) Mr (calc)	ppm M S	11 (3) s	pect R	ank	V Peptide	
► 1 sam <i>T6 peptide matche</i> Ø Auto-fit to windo	eset of 2::HSI s (12 non-dupli w Cheerved	P82_YEAST cate, 4 dupli Mr (expt) 788.4621	81356 cate) Mr (calc)		11 (3) *	pect R	ank		
▶1 som ▼16 peptide matche	eset of 2::HSI s (12 non-dupli w Cbserved 395-2383 426-6352 445-7517	P82_YEAST cate, 4 dupli Mr (expt) 708.4621 051.3758 059.4009	81356 (ate) Mr(calc) 788.4644 551.3807 559.4909	Spm M S -2.84 0 -5.72 0 -3.27 0	11 (3) =	pect R 0033) 0.52)	ank 1 1	U Peptide U R.THUNTE-0 U R.THUIDUER.I + Caisaille OD U R.LARLTHER.I	
▶1 sam ▼16 peptide matche Ø Auto-fit to windo Query Dupes d1841 ▶1 d5671 ▶1 d67256 d6021	eset of 2::HSI s (12 non-dupli w Cbserved 395,2383 426,6552 445,7517 465,7557	Mr (expt) 700.4621 051.3750 053.4609 929.5569	81356 kate) Mr (calc) 788.4644 551.3807 259.4909 929.5480	500 M S -2.84 0 -5.72 0 -2.27 0 9.52 1	11 (3) *	pect R 0033) 0.52) .047)	ank 1 1	0 Peptide 0 R-TUDVIRG 0 R-TUD	
▶1 sam ▼16 peptide matche	eset of 2::HSI s (12 non-dupli w Cbserved 395.2383 626.6532 465.7537 65.7537 515.7735	Mr (expt) 700.4621 251.3735 255.4659 929.5549 1020.5514	01356 (cate) Mr (calc) 788.4644 851.3807 859.4909 929.5480 1029.5342	ppm M S -2.84 0 -5.72 0 -2.27 0 9.52 1 -2.76 0	11 (3) *	pect R 0033) 0.52) 0.47) 0.47)	ank 1 1 4	9 Feptide 9 9: TUPUTE 0 0	
▶1 sam ▼16 peptide matche Ø Auto-fit to windo Query Dupes d1841 ▶1 d5671 ▶1 d67256 d6021	eset of 2::HSI s (12 non-dupli w Observed 395.2383 626.6352 645.7527 665.7557 515.7720 605.2134	Mr (expt) 700.4621 251.3735 255.4659 929.5549 1020.5314 1203.6162	81356 kate) Mr (calc) 788.4444 851.3807 829.4809 328.5420 1028.5542 1208.4190	ppm M S -2,840 -5,720 -2,270 9,521 -2,760 -2,291	11 (3) *	pect R 0033) 0.52) 0.47) 0.14) 0.14)	ank 1 1 4 1	0 Peptide 0 R.TIPULTE.0 0 R.TIPULTE.0 0 R.TIPULTE.0 1 R.TUPULTE.0 1 R.TUPULTE.0 2 R.TUPULTE.1 2 R.TUPULTE.1 2 R.TUPULTE.1	
▶1 sam ▼16 peptide matche Ø Auto-fit to windo Query Dupes d1561 ▶1 d4756 d6001 d6151 ▶1 d16455	eset of 2::HSI s (12 non-dupli w Observed 395.2383 626.6352 645.7557 65.7557 515.7750 605.2154 403.8793	Mr (expt) 700.4621 251.3735 255.4659 929.5549 1020.5514	01356 kate) Mr (calc) 788.4644 851.3807 269.4909 1029.5420 1029.5421 1208.6190 1208.6190	ppm M S -2.84 0 -5.72 0 -2.27 0 9.52 1 -2.76 0	11 (3) *	pect R 0033) 0.52) 0.47) 0.47)	ank 1 1 4 1	9 Feptide 9 9: TUPUTE 0 0	
▶1 sam ▼16 peptide matche @ Auto-fit to windo Query Depas didei ▶1 didei ▶1 did	eset of 2::HSI s (12 non-dupli w Observed 355.2283 456.6552 455.7525 455.7525 455.7525 655.2134 452.4735 455.2735 455.2145	Mr (expt) 700.4421 001.3730 020.5549 020.5549 1020.514 1200.412 1201.412	81356 Kate) Mr (calc) 789.4444 851.3807 209.4909 928.5480 1009.5542 1208.4190 1208.4190 1208.5572	3998 M S -2.84 0 -5.72 0 +2.27 0 9.52 1 -2.76 0 -2.29 1 -2.26 1	11 (3) *	pedt 8 0033 0.52 0.47 0.14 0.14 1.0 1.0	ank 1 1 4 1	<pre>9 Peptide 9 K-TUPDISE.0 Caidation 00 9 K-Lapacitas.t Caidation 00 9 K-Lapacitas.t 0 K-Sequences.t 7 K-Sequences.t 7 K-Sequences.t 8 K-Sequences.t</pre>	
▶1 sam ▼16 peptide matches @ Auto-fit to windo Query Degree d'1441 ▶1 d'4736 d'4736 d'4736 d'4736 d'14435 d'14435 d'13065 d'13067 d'21647 ▶1	eset of 2::HSI s (12 non-dupli w Observed 395.2283 426.6952 445.7527 465.7557 515.7730 605.254 403.6793 645.2579	Mr (expt) 708.4421 003.4402 003.4402 003.4403 023.4403 023.5349 1020.5344 1200.4142 1200.4142 1200.5746	81356 Mr (calc) 798.4444 551.3807 508.4809 925.5480 1008.5582 1208.4190 1208.4190 1208.4190 1208.5772 1209.6554	IPP M 5 -2.84 0 -5.72 0 -2.27 0 9.52 1 -2.28 1 -2.28 1 -2.26 1 -2.06 0	11 (3) * core Exp 37 0.00 3 0 16 0 11 0 12 0 1 0 0 0	pedt 8 0033 0.52 0.47 0.14 0.14 1.0 1.0	ank 1 1 4 1 1 1 1 2	0 Peptide 0 R.TID/IEC.0 0 R.TID/IEC.0 0 R.LIGA/IEC.1 0 R.LIGA/IEC.1 0 R.TID/IEC.1 0 R.TID/	
▶1 sam ▼16 peptide matche 26 Auto-fit to windo Query Dupas d'1641 >1 d'1671 >1 d'16453 d'16455 d'15045 d'15045 d'15045 d'15045	eset of 2::HSI s (12 non-dupli w Observed 395.2983 445.7517 465.7887 515.7720 603.2544 402.8792 643.2544 645.5379 480.3340 777.2940	Mr (expt) 788.4621 281.3780 283.4809 929.5549 1020.5314 1200.4142 1200.4142 1200.5746 1209.442	61356 (cate) Mr (calc) 788.4644 851.3807 929.4644 851.3807 1009.5542 1209.4590 1209.5542 1209.4590 1209.5572 1209.6555 1358.6565 1553.7524	ppm M S -2.86 0 -5.72 0 -2.27 0 9.52 1 -2.76 0 -2.29 1 -2.26 1 -2.26 1 -2.01 0 2.10 1	11 (3) * 500000 Exp 37 0.000 5 0 16 0.1 5 0 12 0	pect 2 0033 0.52 0.47 0.47 0.14 0.14 1.0 1.0 1.4 1.0 1.4 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.	ank 1 1 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Peptide 8.KTUPUTR-0 F.TUPUTR-0 9.KTUPUTR-1 9.KTUPUTR-1 9.KLAPATCH.1 9.KLAPATCH.1 9.KLAPATCH.2	
▶1 sam ▼16 peptide matche 2 Auto-fit to windo Query Dupas d'1645 >1 d'1675 >1 d'1675 d'1675 d'1675 d'1675 d'1675 d'1905 d'1905 d'1905	eset of 2::HSI s (12 non-dupli w Observed 395.2283 426.6952 445.7527 465.7557 515.7730 605.254 403.6793 645.2579	Mr (expt) 788.4621 281.3780 283.4809 929.5549 1020.5314 1200.4142 1200.4142 1200.5746 1209.442	81356 Mr (calc) 798.4444 551.3807 508.4809 925.5480 1008.5582 1208.4190 1208.4190 1208.4190 1208.5772 1209.6554	ppm M S -2.86 0 -5.72 0 -2.27 0 9.52 1 -2.76 0 -2.29 1 -2.26 1 -2.26 1 -2.01 0 2.10 1	11 (3) * core Exp 37 0.00 3 0 16 0 11 0 12 0 1 0 0 0	pect 8 0033 0.52 0.47 0.18 0.18 1.0 1.0 1.0	ank 1 1 4 1 1 1 1 2	Peptide 8.KTUPUTR-0 F.TUPUTR-0 9.KTUPUTR-1 9.KTUPUTR-1 9.KLAPATCH.1 9.KLAPATCH.1 9.KLAPATCH.2	

The results from the matches to the randomised sequences are saved in new sections of the results file on the Mascot server. This means that we can view these results in exactly the same way as if we had performed a separate search against a randomised database that we had created manually. We can see matches here with scores of 37 and 51, with expect values well below 1%. If we click on the query number link to display the Peptide View of one of these matches ...

This is what it looks like. A pretty decent match from a decoy sequence. Tryptic peptide, no variable modifications, good run of b and y ions, most of the larger peaks matched.

Asking whether it is correct or wrong becomes almost a philosophical question.

The fact is, when we search large numbers of spectra against large sequence databases, we can get such matches by chance. No amount of expert manual inspection will prevent this. Database matching is a statistical process and, for this search, the number and magnitude of the false positives are well within the predicted range, which is all we can ask for.

Sensitivity improvement is always a hot topic. A limitation of database matching is that even the best scoring scheme cannot fully separate the correct and incorrect matches, as shown here in a schematic way. The score distribution for the correct matches overlaps that of the incorrect matches. When we use a decoy search we are deciding where to place a threshold of some sort

But, what if we could find ways to pull these two distributions further apart? In other words, improve the specificity of the scoring.

Sensitivit	y optimisatio	on
K. C*ASLOK. R	Anal. Chem. 2002, 74, 5383-5392	
AN .		al Model To Estimate the de Identifications Made by se Search
PeptideProphet	Andrew Keller, *.† Alexey I. Nesvizhs	kii,*. [†] Eugene Kolker, and Ruedi Aebersold
	Institute for Systems Biology, 1441 North 34	th Street, Seattle, Washington 98103
C 9,000 9,000 6,000 9,000 6,000 9,0000 9,00000000	Percolator (re-ranked) PepcleProphet SEQUEST (enzyme specific) SEQUEST Washburn et al. DTASelect (tryptic)	NATURE METHODS VOL4 NO.11 NOVEMBER 2007 923 Semi-supervised learning for peptide identification from shotgun proteomics datasets Lukas Käll ¹ , Jesse D Canterbury ¹ , Jason Weston ² , William Stafford Noble ^{1,3} & Michael J MacCoss ¹
MASCOT : Scorin	ng & Statistics	© 2007-2012 Matrix Science

One of the first attempts to do this was Peptide Prophet from the ISB. This was and is popular for transforming Sequest scores into probabilities.

It takes information about the matches in addition to the score, and uses an algorithm called expectation maximization to learn what distinguishes correct from incorrect matches. Examples of additional information would be precursor mass error, number of missed cleavages, or the number of tryptic terminii.

A more recent development has been to use the matches from a decoy database as negative examples for the classifier. Percolator trains a machine learning algorithm called a support vector machine to discriminate between a sub-set of the high-scoring matches from the target database, assumed correct, and the matches from the decoy database, assumed incorrect.

This can give very substantial improvements in sensitivity. The original Percolator was implemented mainly with Sequest in mind, but Markus Brosch at the Sanger Centre wrote a wrapper that allowed it to be used with Mascot results and published results such as this. The black trace is the sensitivity using the Mascot homology threshold and the red trace is the sensitivity after processing through Percolator. It doesn't work for every single data set. But, when it does work, the improvements can be most impressive.

The developers of Percolator have kindly agreed to allow us to distribute and install Percolator as part of Mascot 2.3 and later. This option will be available for any search that has at least 100 MS/MS spectra and auto-decoy results, but it works best if there are several thousand spectra. To switch to Percolator scores, just check the box and then choose Filter. This is the example search that is linked from the MS/MS Summary report help page

Using the Mascot homology threshold for a 1% false discovery rate, there are 1837 peptide matches. Re-scoring with Percolator gives a useful increase to 1985 matches.

Note that, in general, the scores are lower after switching to Percolator. The Posterior error probability is tabulated in the expect column. A Mascot score is calculated from the expect value and the single score threshold, which we describe as the identity threshold, has a fixed value of 13 (-10 log 0.05). By keeping the score, threshold, and expect value consistent, we hope to avoid breaking any third party software that expects to find these values.