

Types of Modificatio	ons	
Post-translational		
 Phosphorylation, acety 	lation	
Artefacts		
 Oxidation, acetylation 		
Derivatisation		
 Alkylation of cysteine, 	ICAT, SILAC	
Sequence variants		
•Errors, SNPs, other vari	iants.	
SCOT : Modifications	© 2007-2023 Matrix Science	MATRIX SCIENCE

Modifications are a very important topic in database searching.

In some cases, the main focus of a study is to characterise post translational modifications, which may have biological significance. Phosphorylation would be a good example.

In other cases, the modification may not be of interest in itself, but you need to allow for it in order to get a match. Oxidation during sample preparation would be an example.

And, of course, many methods of quantitation involve modifications containing isotopic labels.

Some sequence variants, such as the substitution of one residue by another, are equivalent to modifications, and can be handled in a similar way.

				to=28	🖂	2	∭\ [□ @ ≫
	JNI/	NOD protein modific	ations for mass sp	ectrometry		н	lp
	Unim	nod Lo	ogged as richardj Lo	g out Change password Advanced search			
	Add	Search for: Any field	✓ Contains	Sear	ch Details found: 1507	Records Per	
	new		Sho	w all	Page 28 of 76	Page::	
				Select/Unselect all Delete selected			
2 🖸 🐼	Acces	ssion # PSI-MS Name	Interim name	Description	Monoisotopic mass	Average mass	Composition
Copy View	200	Ethanedithiol	EDT	EDT	75.980527	76.1838	H(4) C(2) O(-1) S(2)
Copy View	303	DeStreak	DeStreak	Cysteine mercaptoethanol	75.998285	76.1176	H(4) C(2) O S
Copy View	208	Delta:H(4)C(6)	Acrolein76	Acrolein addition +76	76.031300	76.0960	H(4) C(6)
Copy View	653		Ser->Tyr	Ser->Tyr substitution	76.031300	76.0960	H(4) C(6)
Copy View	1045		Ala->Phe	Ala->Phe substitution	76.031300	76.0960	H(4) C(6)
Copy View	340	Bromo	bromo	bromination	77.910511	78.8961	H(-1) Br
Copy View	728		Methylphosphonate	Methylphosphonylation	77.987066	78.0071	H(3) C O(2) P
Copy View	316	DimethylpyrroleAdduct	pyrrole	2,5-dimethypyrrole	78.046950	78.1118	H(6) C(6)
Copy View	423	Delta:Se(1)	selenyl	selenyl	79.916520	78.9600	Se
Copy View	40	Sulfo	Sulfation	O-Sulfonation	79.956815	80.0632	O(3) S
Copy View	21	Phospho	Phospho	Phosphorylation	79.966331	79.9799	H O(3) P
Copy View	1927		Delta:H(4)C(5)O(1)	methylglyoxal-derived argpyrimidine	80.026215	80.0847	H(4) C(5) O
Copy View	1104		Gly->His	Gly->His substitution	80.037448	80.0880	H(4) C(4) N(2)
Copy View	837		Arg->Npo	Arginine replacement by Nitropyrimidyl ornithine	80.985078	81.0297	H(-1) C(3) N O(2)
Copy View	2000		Xlink:SDA	NHS-Diazirine crosslinker	82.041865	82.1005	H(6) C(5) O
Copy View	549		Cys->Trp	Cys->Trp substitution	83.070128	83.0670	H(5) C(8) N S(-1)
Copy View	1211		Thr->Trp	Thr->Trp substitution	85.031634	85.1060	H(3) C(7) N O(-1)
Copy View	211	NEIAA	NEIAA-d0	N-ethyl iodoacetamide-d0	85.052764	85.1045	H(7) C(4) N O
Copy View Copy View	1886		Xlink:BuUrBu[85]	Bu fragment of BuUrBu crosslinker	85.052764	85.1045	H(7) C(4) N O
	1052		Ala->Arg	Ala->Arg substitution	85.063997	85.1078	H(7) C(3) N(3)

Comprehensive and accurate information about post translational and chemical modifications is an essential factor in the success of protein identification. In Mascot, we take our list of modifications from Unimod, which is an on-line modifications database.

←) → ♂ +	ŵ	🛈 🔏 v	ww.unimod.org/modifications_view.	php?editid1=56		·· 🖂 🕁	lif\		🖹 »	=
UNIN	IOD	protein modifie	cations for mass spectrometry							
		ccession #: 56							Help	
	1000101010									
Back to list										
Accession #	56		PSI-MS Name	Acetyl:2H(3)	Interim Name	Ao	styl_heavy			
Description	Acetate lat	beling reagent (N-	term & K) (heavy form, +3amu)							
Alt. Description	N-trideuter	riumacetoxy								
Composition	H(-1) 2H(3	I) C(2) O	Monoisotopic	45.029395	Average	45.	0552			
Specificity De	finition 1									
Site	к		Position	Anywhere	Classification	Iso	topic label			
Specificity De										
Site	N-term		Position	Any N-term	Classification	Isc	topic label			
Specificity De										
Site	н		Position	Anywhere	Classification	Iso	topic label			
Specificity De	finition 4									
Site	S		Position	Anywhere	Classification	Iso	topic label			
Specificity De	finition 5									
Site	T		Position	Anywhere	Classification	Isc	topic label			_
Specificity De	finition 6									
Site	Y		Position	Anywhere	Classification	Isc	topic label			_
Specificity De			- states							
Site	N-term		Position	Protein N-term	Classification	Isc	topic label			_
Notes and Rel	PubMed	Deference								
Source	PubMed	Reference	11857757							
Source	PubMed PMID	Reference	11999733							
Source	PubMed PMID	Reference	12175151							
Source	Journal	Reference	Controlling Deuterium isotope effects of Chemistry, Purdue University, West	in comparative proteomics. Zhan Lafayette, IN, USA. Analytical Ch	g, Roujian; Sioma, Cathy S.; Thompson, emistry (2	Robert A.; Xiong, L	i; Regnier, Fr	ed E De	epartment	
Source	Journal	Reference	Global internal standard technology fo IN, USA. Journal of Chromatography,	A (2002), 949(1-2), 173-184.	aborty, Asish; Regnier, Fred E Departme	ent of Chemistry, Pi	Irdue Univers	sity, West	t Lafayett	e,
Source	Journal	Reference	Comparative proteomics based on sta Asish; Seeley, Erin; Sioma, Cathy; Th	able isotope labeling and affinity se compson, Robert A. Department of	election. Regnier, Fred E.; Riggs, Larry; Z f Chemistry, Pu	thang, Roujian; Xior	ng, Li; Liu, Pe	iran; Ch	akraborty	4
Curator	penner	Last Modified	2011-11-21 10:07:03		Verified	Yes	1			
Back to list										

There are other lists of modifications on the web, like DeltaMass on the ABRF web site and RESID from the EBI, but none is as comprehensive as Unimod.

Mass values are calculated from empirical chemical formulae, eliminating the most common source of error. Specificities can be defined in ways that are useful in database searching, and there is the option to enter mass-spec specific data, such as neutral loss information. This screen shot shows one of the better annotated entries, I can't pretend that all of them are this detailed. Nevertheless, it is a very useful, public domain resource that beats having to create your own list in an Excel spreadsheet or on the back of an envelope.

Visibility: ITHE Monoisotopic Average Composition Source Visibility Err Tol □ Short list 15N-oxobutancic -18.02398 H(-3) 15N(-1) Unimod long yes Copy Print □ Grand list 2-mitrobenzyl 130.026609 130.0967 H(6) C(5) O(4) Unimod long yes Copy Print □ Mixed 2-mitrobenzyl 135.032028 135.1201 H(5) C(7) N O(2) Unimod long yes Copy Print □ Yes 2-nitrobenzyl 135.032028 135.1201 H(5) C(7) N O(2) Unimod long yes Copy Print □ Yes 2-nitrobenzyl 116.01959 116.0722 H(4) C(4) O(4) Unimod long yes Copy Print □ Yes 3-deoxyglucosone 144.042259 144.1253 H(8) C(6) O(4) Unimod long yes Copy Print □ Mixed 3-sulfo 183.983029 184.1693 H(4) C(7) O(4) S Unimod long yes Copy Print □ Mixed 3-sulfo 183.983029 184.1693 H(14) C(2) O(2) Unimod long yes Copy Print □ Acont 4-ONE 154.0933 174.1633 H(2) C	Displaying 1358/1358	Modifications				
Short list 15N-oxobutanoic -18.023584 - 18.0239 H(-3) 15N(-1) Unimod long yes Copy Print More and the structure of the stru	Visibility:	🗆 Title 🕈	Monoisotopic Average	Composition Source	Visibility	Err Tol
Long list 2-dimethylsuccinyl 144.042259 144.1253 H(8) C(6) O(4) Unimod Iong yes Copy Print Mixed 2-monomethylsuccinyl 130.026609 130.0967 H(6) C(5) O(4) Unimod Iong yes Copy Print Not listed 2-introbenzyl 135.032028 135.1201 H(5) C(5) O(4) Unimod Iong yes Copy Print Error tolerant: 21H9G 282.05282 428.2476 H(10) C(16) O(5) Unimod Iong yes Copy Print No 3-deoxyglucosone 144.042259 144.1253 H(8) C(6) O(4) Unimod Iong yes Copy Print No 3-phosphoglyceryl 167.982375 168.0420 H(5) C(3) O(6) P Unimod Iong yes Copy Print Mixed 3-sulfo 183.983029 184.1693 H(4) C(7) O(4) S Unimod Iong yes Copy Print Classifications: clear 4-ONE 194.04239 330 154.2063 H(14) C(9) O(2) Unimod Iong yes Copy Print Post-translational -AcAtylical 372.142033 372.142033 Yes Copy Print Chemical derivatue -Acetyl:32(2) C(-1) 136.088815 136.1910 H(12) C(9) OUimimod <td< td=""><td></td><td>15N-oxobutanoic</td><td>-18.023584 -18.0239</td><td>H(-3) 15N(-1) Unimod</td><td>long</td><td>yes Copy Print</td></td<>		15N-oxobutanoic	-18.023584 -18.0239	H(-3) 15N(-1) Unimod	long	yes Copy Print
Mixed 2-monomethylsuccinyl 130.026609 130.0987 H(6) C(5) O(4) Unimod Iong yes Copy Print Mixed 2-introbenzyl 135.032028 135.1201 H(5) C(7) N O(2) Unimod Iong yes Copy Print Error tolerant: 2HPG 282.052824 282.2476 H(10) C(16) O(5) Unimod Iong yes Copy Print Yes 3-deoxyglucosone 144.042259 144.1253 H(8) C(6) O(4) Unimod Iong yes Copy Print No 3-deoxyglucosone 144.042259 144.1253 H(8) C(6) O(4) Unimod Iong yes Copy Print Mixed 3-udeoxyglucosone 145.093280 154.2063 H(12) C(3) O(6) Puimod Iong yes Copy Print Mixed 3sulfo 183.983029 184.1693 H(4) C(7) O(4) S Unimod Iong yes Copy Print Classifications: clear 4-ONE 154.093380 154.2063 H(14) C(9) O(2) Unimod Iong yes Copy Print Post-translational - 4-CoNE 372.142033 372.3671 H(24) C(17) O(9) Unimod Iong yes Copy Print Catestifications: clear 4-ONE+Deta:H(-2)(C(-1) Ione V) Unimod		2-dimethylsuccinyl	144.042259 144.1253	H(8) C(6) O(4) Unimod	long	yes Copy Print
Not listed 2-nitrobenzyl 135.032028 135.1201 H(5) C(7) N (2) Unimod Iong yes Copy Print 2-succinyl 116.01095 9116.0722 H(4) C(4) O(4) Unimod Iong yes Copy Print 2-succinyl 116.01095 9116.0722 H(4) C(4) O(4) Unimod Iong yes Copy Print Pres 3-deoxyglucosone 144.042259 144.1253 H(8) C(6) O(4) Unimod Iong yes Copy Print No 3-phosphoglyceyl 167.982375 168.0420 H(5) C(3) O(6) P Unimod Iong yes Copy Print Moded 3-ubio 183.983029 184.1693 H(4) C(9) O(2) Unimod Iong yes Copy Print Classifications: clear -0NE+DetatH(-2)O(-1) 136.088815 136.1910 H(12) C(9) OU Inimod Iong yes Copy Print Post-translational -4-ONE+DetatH(-2)O(-1) 136.08815 136.1910 H(12) C(9) OU Inimod Iong yes Copy Print Pre-translational -4-ONE+DetatH(-2)O(-1) 136.08815 136.1910 H(12) C(1) O(2) Unimod Iong yes Copy Print Co-translational -4-ONE+DetatH(-2)O(-1) 136.08815 136.1910 H(12) C(1) O(2) Unimod<		2-monomethylsuccinyl	130.026609 130.0987	H(6) C(5) O(4) Unimod	long	yes Copy Print
2-succinyl 116.010959 116.0722 H(4) C(4) O(4) Unimod Iong yes Copy Print Yes 3-deoxyglucosone 144.042259 144.1253 H(8) C(6) O(5) Unimod Iong yes Copy Print No 3-phosphoglyceryl 167.982375 168.0420 H(5) C(3) O(6) P Unimod Iong yes Copy Print Mixed 3-sphosphoglyceryl 167.982375 168.0420 H(5) C(3) O(6) P Unimod Iong yes Copy Print Classifications: clear -4-ONE 194.1693 30 154.2063 H(14) C(9) O(2) Unimod Iong yes Copy Print -Post-translational -AcAtlyGal 372.142033 372.3671 H(24) C(17) O(9) Unimod Iong yes Copy Print Chernalsational -AcAtlyGal 372.142033 372.3671 H(24) C(17) O(9) Unimod Iong yes Copy Print Co-translational -Acatylical 372.142033 372.3671 H(2) C(10) N(2) O Unimod Iong yes Copy Print Chernal derivative -Acatylical 372.142033 372.3671 H(2) C(2) O Unimod Iong yes Copy Print Chernal derivative -Acatylical 372.142033 372.3671 H(2) C(2)		2-nitrobenzyl	135.032028 135.1201	H(5) C(7) N O(2) Unimod	long	yes Copy Print
Type 3-deoxyglucosone 144.042259 144.1253 H(8) C(6) O(4) Unimod Iong yes Copy Print No 3-phosphoglyceryi 167.982375 168.0420 H(5) C(3) O(6) P Unimod Iong yes Copy Print Mixed 3-ubosphoglyceryi 167.982375 168.0420 H(4) C(7) O(4) S Unimod Iong yes Copy Print Classifications: clear 4-ONE 154.099380 154.2063 H(14) C(9) O(2) Unimod Iong yes Copy Print Post-translational -ONE 154.099380 154.2063 H(12) C(9) O Unimod Iong yes Copy Print Post-translational -A-ONE 154.099380 154.2063 H(22) C(1) O(2) Unimod Iong yes Copy Print Post-translational -A-Cot(PolexiH(-2)O(-1) 136.08815 136.1910 H(22) C(1) O(2) Unimod Iong yes Copy Print Co-translational -Acctylical 372.142033 372.3671 H(24) C(10) N(2) O Unimod Iong yes Copy Print Co-translational -Acctylical 42.010564 42.0367 H(2) C(2) O Unimod Iong yes Copy Print Chemical derivative -Acetyl:13C(2) 44.012724 4		2-succinyl	116.010959 116.0722	H(4) C(4) O(4) Unimod	long	yes Copy Print
No 3-phosphoglyceryl 167.982375 168.0420 H(5) C(3) O(6) P Unimod Iong yes Copy Print Mixed 3sulfo 183.983029 184.1693 H(4) C(7) O(4) S Unimod Iong yes Copy Print Classifications: dear -ONE + Delta:H(-2)O(-1) 136.088815 136.1910 H(12) C(9) O(2) Unimod Iong yes Copy Print Cossifications: dear -ONE + Delta:H(-2)O(-1) 136.088815 136.1910 H(12) C(9) O(2) Unimod Iong yes Copy Print Co-translational -ONE + Delta:H(-2)O(-1) 1370.048013 170.1674 H(-2) C(-1) O(-2) Unimod Iong yes Copy Print Co-translational -Acctyl 42.010565 42.0367 H(2) C(2) O Unimod Iong yes Copy Print Chemical derivative -Acctyl:13C(2) 44.017274 44.0220 H(2) 13C(2) O Unimod Iong yes Copy Print Acteryl:13C(2) 44.017274 44.0220 H(2) 13C(2) O Unimod Iong yes Copy Print Acteryl:13C(2) 44.011276 44.0220 H(2) 13C(2) O Unimod Iong yes Copy Print Acteryl:13C(2) 45.023395 45.0552 H(-1) H(3) C(3) N Unimod </td <td>Error tolerant:</td> <td>2HPG</td> <td>282.052824 282.2476</td> <td>H(10) C(16) O(5) Unimod</td> <td>long</td> <td>yes Copy Print</td>	Error tolerant:	2HPG	282.052824 282.2476	H(10) C(16) O(5) Unimod	long	yes Copy Print
Mixed 3sulfo 183.983029 184.1693 H(4) C(7) O(4) S Unimod long yes Copy Print Classifications: dear 4-ONE 154.099380 154.2663 H(14) C(9) O(2) Unimod long yes Copy Print Classifications: dear 4-ONE+Deta:H(-2)O(-1) 136.088815 136.1910 H(12) C(9) OUnimod long yes Copy Print Post-translational - <td< td=""><td>□ Yes</td><td>3-deoxyglucosone</td><td>144.042259 144.1253</td><td>H(8) C(6) O(4) Unimod</td><td>long</td><td>yes Copy Print</td></td<>	□ Yes	3-deoxyglucosone	144.042259 144.1253	H(8) C(6) O(4) Unimod	long	yes Copy Print
A-DNE 154.099380 154.2063 H(14) C(9) O(2) Unimod Iong yes Copy Print Classifications: dear ONE+Deta:H(-2)O(-1) 136.08815 136.1910 H(12) C(9) O Unimod Iong yes Copy Print Post-translational ONE+Deta:H(-2)O(-1) 136.08815 136.1910 H(12) C(17) O(9) Unimod Iong yes Copy Print Post-translational Acotyleion -46.005479 -46.0254 H(-2) C(-1) O(-2) Unimod Iong yes Copy Print Pre-translational Acctyleion -46.005479 -46.0254 H(-2) C(-1) O(-2) Unimod Iong yes Copy Print Co-translational Acctyleion -46.005479 -46.0254 H(-2) C(-1) O(-2) Unimod Iong yes Copy Print Co-translational Acctylicauchypesine -46.005479 -46.0220 H(2) C(2) O Unimod Iong yes Copy Print Checkyl:31G(2) 44.017274 44.0220 H(2) C(2) O Unimod Iong yes Copy Print Acetyl:41(3) 45.029395 45.0552 H(-1) 2H(3) C(2) O Unimod	□ No	3-phosphoglyceryl	167.982375 168.0420	H(5) C(3) O(6) P Unimod	long	yes Copy Print
Classifications: clear 4-0NE+Delta:H(-2)0(-1) 136.088815 136.1910 H(12) C(9) 0 Unimod long yes Copy Print Post-translational	Mixed	3sulfo	183.983029 184.1693	H(4) C(7) O(4) S Unimod	long	yes Copy Print
AccAllylGal 372.142033 372.3671 H(24) C(17) O(9) Unimod Iong yes Copy Print Post-translational type-ion -46.005479 -46.0254 H(-2) C(-1) O(-2) Unimod Iong yes Copy Print Pre-translational type-ion -46.005479 -46.0254 H(-2) C(-1) O(-2) Unimod Iong yes Copy Print Pre-translational type-ion -46.0254 H(2) C(2) O Unimod Iong yes Copy Print Acctyl 42.010565 42.0367 H(2) C(2) O Unimod Iong yes Copy Print Actelyl 45.023935 45.0552 H(-1) 2H(3) C(2) O Unimod Iong yes Copy Print Activitact Activitacy/ibyusine 97.089149 97.1582 H(11) C(6) N Unimod Iong yes Copy Print Cotal ADP-Ribosyl 541.061110 541.3005 H(13) C(10) N(5) O(9) P(2) Pent Unimod Iong yes Copy Print Local Page 1/68 Go to page ISt AD <<<<>>> Page size 20		4-ONE	154.099380 154.2063	H(14) C(9) O(2) Unimod	long	yes Copy Print
Post-translational -4-type-ion -46.005479 -46.0254 H(-2) C(-1) O(-2) Unimod long yes Copy Print Co-translational -AccQ1ag 170.048013 170.1674 H(6) C(10) N(2) O Unimod long yes Copy Print Pre-translational -Acctyl 42.01056 42.0367 H(2) C(2) O Unimod long yes Copy Print Acetyl 42.01026 42.01274 44.0220 H(2) 13(2) O Unimod long yes Copy Print Acetyl:131C(2) 44.012724 44.0220 H(2) 13(2) O Unimod long yes Copy Print Source: - - Acetyl:44(3) 45.02395 45.0552 H(-1) 2(4) N Unimod long yes Copy Print Cottylinuod - Acetyl:4804064 113.1576 H(11) C(6) N Unimod long yes Copy Print Cottylinuod - ADP-Rbosyl 541.061110 541.3005 H(13) C(10) N(5) O(9) P(2) Pent Unimod long yes Copy Print Local Page 1/68 Go to page Ist AD > > > Page size 20 Add new modific	Classifications: clear	4-ONE+Delta:H(-2)O(-1)	136.088815 136.1910	H(12) C(9) O Unimod	long	yes Copy Print
Co-translational AccQTag 170.048013 170.1674 H(6) C(10) N(2) 0 Unimod long yes Copy Print Pre-translational Acctyl 42.010565 42.0367 H(2) C(2) 0 Unimod long yes Copy Print Chemical derivative Acctyl: 24(3) 45.029395 45.0552 H(-1) 2H(3) C(2) 0 Unimod long yes Copy Print Acctyl:2H(3) 45.029395 45.0552 H(-1) 2H(3) C(2) 0 Unimod long yes Copy Print Source: Acctyl:2H(3) 45.029395 45.0552 H(11) C(6) N Unimod long yes Copy Print Columinod Acctyl:2H(3) 45.029395 45.0552 H(11) C(6) N Unimod long yes Copy Print Columinod Acctyl:Physusine 97.089149 97.1582 H(11) C(6) N Unimod long yes Copy Print Chuimod Acctyl:Roboxyl 541.06110 541.3005 H(13) C(10) N(5) O(9) P(2) Pent Unimod long yes Copy Print Local Page 1/68 Go to page 15 to AD V V Page size 20 V Add new modification Main menu Check Unimod Check Unimod	- ^	4AcAllylGal	372.142033 372.3671	H(24) C(17) O(9) Unimod	long	yes Copy Print
Pre-translational Chemical derivative Artefact Acetyl 42.010565 42.0367 H(2) C(2) 0 Unimod indexing yes Yes Copy Print Artefact Acetyl:13C(2) 44.017274 44.0220 H(2) 13C(2) 0 Unimod iong yes Yes Copy Print Source: Acetyl:2H(3) 45.029395 45.0552 H(-1) 2H(3) C(2) 0 Unimod iong yes Yes Copy Print Induction Acetyl:2H(3) 97.068149 97.1582 H(11) C(6) N Unimod iong yes Yes Copy Print Immod Acetylhypusine 113.084064 113.1576 H(11) C(6) N O Unimod iong yes Copy Print Induct in short list Page 1/68 Go to page [15 to AD V Yes Page size 20 v Add new modification Main menu Check Unimod Check Unimod Check Unimod	Post-translational	a-type-ion	-46.005479 -46.0254	H(-2) C(-1) O(-2) Unimod	long	yes Copy Print
Chemical derivative Artefact Chemical derivative (Artefact Check (1) 13C(2) 0 Unimod long (2) 0 Unimod long (2) 0 Unimod long (2) 0 Unimod long (2) 0 Unimod (Co-translational	AccQTag	170.048013 170.1674	H(6) C(10) N(2) O Unimod	long	yes Copy Print
Artefact Acetyl:13C(2) 44.0122/4 44.0220 H(2) 13C(2) 0 Unimod iong yes Copy Print Artefact Acetyl:21(3) 45.029395 45.0552 H(-1) 2H(3) C(2) 0 Unimod iong yes Copy Print Copy Print Acetyldeoxyhypusine 97.089149 97.1582 H(11) C(6) N Unimod iong yes Copy Print Unimod Acetyldeoxyhypusine 113.084064 113.1576 H(11) C(6) N O Unimod iong yes Copy Print Edited Unimod ADP-Ribosyl 541.061110 541.3005 H(13) C(10) N(5) O(9) P(2) Pent Unimod iong yes Copy Print Local Page 1/68 Go to page 15 to AD <		Acetyl	42.010565 42.0367	H(2) C(2) O Unimod	mixed	yes Copy Print
Source: Acetyl:2H(3) 45.029395 45.0552 H(-1) 2H(3) C(2) 0 Unimod long yes Copy Print Source: Acetyldeoxyhypusine 97.089149 97.1582 H(11) C(6) N Unimod long yes Copy Print Unimod Acetyldeoxyhypusine 113.064064 113.1576 H(11) C(6) N Unimod long yes Copy Print Edited Unimod ADP-Ribosyl Icotal Page 1/68 Go to ADD Add new modification Main menu Include in long list Main menu		Acetyl:13C(2)	44.017274 44.0220	H(2) 13C(2) O Unimod	long	yes Copy Print
Source: Acetylhypusine 113.084064 113.1576 H(11) C(6) N 0 Unimod long yes Copy Print Edited Unimod ADP-Ribosyl S41.061110 541.3005 H(13) C(10) N(5) O(9) P(2) Pent Unimod long yes Copy Print Local Page 1/68 Go to page [15 to AD Selected: 0 Add new modification Main menu Check Unimod Check Unimod Check Unimod Include in short list Include in long list Ocheck Unimod Selected: 0 Main menu Check Unimod Check Unimod Check Unimod Selected: 0 Selected: 0 Selected: 0 Include in long list Selected: 0 Selected: 0 Selected: 0 Main menu Check Unimod Check Unimod Selected: 0	Artefact v	Acetyl:2H(3)	45.029395 45.0552	H(-1) 2H(3) C(2) O Unimod	long	yes Copy Print
Unimod Acetylhypusine 113.084064 113.1576 H(11) C(6) N 0 Unimod long ves Copy Print Edited Unimod ADP-Ribosyl 541.061110 541.3005 H(13) C(10) N(5) O(9) P(2) Pent Unimod long ves Copy Print Local Page 1/68 Go to page 15 to AD <	0	Acetyldeoxyhypusine	97.089149 97.1582	H(11) C(6) N Unimod	long	yes Copy Print
Edited Unimod ADP-Ribosyl S41.061110 S41.3005 H(13) C(10) N(5) O(9) P(2) Pent Unimod long yes Copy Print Local Page I/68 Go page I/58 Copy Print Add new modification Main menu Check Unimod Include in long Ist		Acetylhypusine	113.084064 113.1576	H(11) C(6) N O Unimod	long	yes Copy Print
Local Page 1/68 Go to page 15 to AD V V Page size 20 V Apply to selected: 0 Include in short list Add new modification Main menu Check Unimod		ADP-Ribosyl	541.061110 541.3005 H(13	C(10) N(5) O(9) P(2) Pent Unimod	long	yes Copy Print
Include in short list Add new modification Main menu Cneck Unimod Include in long list		Page 1/68 Go to page 15 to	0 AD	~ << >>		Page size 20 v
Include in short list Add new modification Main menu Cneck Unimod Include in long list						
Include in long list		Add new modification	Main menu		-	Check Unimod
	Include in short list					
Include in error tolerant	Include in long list					
	Include in error tolerant					
Exclude from error tolerant	Exclude from error tolerant					
Delete	Delete					

If you go to Mascot Server Modification editor, there is a link to check to see if there is an updated Unimod file.

If there is a newer version available, click on the "Download Now" button and "OK" once the download is complete. This is the easiest way to keep the modifications list on an in-house Mascot server up-to-date. Note that updating the Unimod modifications does not affect or change your local modifications.

		👢 Matrix Science	ie - Mascot - MS///: × +
	$\leftarrow \rightarrow$	Câ	O A archive-win10/mascot.2.7.00/cgi/search form.pl?FORMVER=2&SEARCH ☆
			SwissProt
		Taxonomy Enzyme Quantitation	Trypsin V Allow up to 1 V missed cleavages
		Crosslinking	
		Fixed modifications	ISH-oxobutanic (Protein N-term ISH-oxobutanic (Protein N-term Z-dimethylsuccinyl (C)
		<u>Variable</u> modifications	
		Peptide tol. ±	1.2 Da v # ¹³ C 0 v MS/MS tol. ± 0.6 Da v
		Peptide charge	2+ V Monoisotopic () Average ()
		Data file	Browse No file selected.
			Mascot generic V Precursor m/z
		Instrument	
MASCOT : Mo	odificatio	ons	© 2007-2023 Matrix Science MATRIX SCIENCE

Here is a tip. The default list of modifications displayed in the Mascot search form is a short list, containing only the most common mods. If you want to see the complete list of mods, check the Display all modifications box.

Now let's define what it is the software is having to do when looking for modified sites.

Let's consider this slightly unusual peptide comprised of 8 Lysine, 4 serine and 2 threonine residues as an example. If we carried out a search with Lysine acetylation and Phospho Serine & Threonine:

If the precursor mass and tolerance allowed for a single Lysine acetylation, there are just 8 possible arrangements of this.

Likewise, if a single phosphorylation was possible, there are just 6 possible arrangements. However, the number of possible arrangements increases rapidly as we consider more modifications and modifiable sites.

If we need two lysine residues to be acetylated to match the precursor, we now have 28 possible arrangements.

Add in a single phosphorylation and we now have the possible 28 acetylation sites combined with 6 possible phosphorylation sites for a grand total of 168 possible arrangements.

This is the so-called combinatorial explosion, and it's one reason why some searches with a large number of frequent modifications can take a long time.

Modification iter	ator
Single, consistent,	permutation method
 No switching between 	een methods
Controlled by 3 use	er definable parameters:
 MaxPepNumVarMod 	ds
Max no. of different v	ariable modifications per peptide
 MaxPepNumModifie 	
Max no. of modified re	
 MaxPepModArrange 	ements
Max no. of arrangeme	nts of an individual varmod composition
MASCOT : Modifications	© 2007-2023 Matrix Science

We use a single, consistent permutation method – there's no switching between different methods. The permutation iterator samples arrangements using a uniformly random scheme. The operation of this is controlled by 3 user definable settings.

MaxPepNumVarMods – this specifies the maximum number of different variable modifications which can be applied to a peptide

MaxPepNumModifiedSites – this specifies the maximum number of residues which can be modified on a peptide

MaxPepModArrangements – "this specifies the maximum number of arrangements of an individual variable modification composition to test"

Mascot 2.8 ships with the following default values for these parameters:

MaxPepNumVarMods 3, MaxPepNumModifiedSites 5 and MaxPepModArrangements 64.

There are two main cases where you might want to change these defaults. Decreasing any of these values will reduce the search space, as fewer arrangements will be tested. This will decrease the search time – so if you're looking at a sample which is not highly modified and where definitive site analysis is not the aim of the study, you may wish to decrease some of these values.

However, if site analysis is important, or if you're looking at a highly modified protein such as Histone, then you may need to increase these limits in order to gain accurate modification localisation results.

It is extremely important that you do not choose more than the absolute minimum number of variable modification in a search. We talked about this in an earlier, but it is worth repeating.

Variable or differential or non-quantitative modifications are expensive, in the sense that they increase the time taken for a search and reduce its specificity.

Some variable modifications are worse than others. Modifications that only apply to a terminus, especially if they only apply when particular residue is at the terminus, like pyro-glu, make little difference to the number of peptides to be tested. The problem modifications are the ones that apply to residues in any position, especially if they apply to multiple residues, like phosphorylation.

Unless you have enriched the sample in a particular PT-mod, e.g IMAC for phosphopeptides, it is usually not a good idea to try and catch PT-mods in a first pass search. Better to use a second pass search, which we call an error tolerant search, to catch the low abundance mods. We will come back to this later.

Be sparing v	with variable modifi	cations	
▼Sensitivity and FDR (reversed)	protein sequences)	Oxidation (M)	
Protein family members PSMs v above homology v Decoy results are available in gthe o	SwissProt Decoy FDR 28 1 3.57% 84 1 1.19% Adjust to 1% decoy report. Image: State	•	4 sec
▼Sensitivity and FDR (reversed Protein family members PSMs v above homology v Decoy results are available in zthe	SwissProt Decoy FDR 26 1 3.85% 71 1 1.41% Adjust to 1%	Acetyl (K) Carboxymethyl (C) Me-ester (DE) Oxidation (M) Phospho (ST) Phospho (Y) Sodiated (DE)	<mark>53 sec</mark>
MASCOT : Modific	ations © 2007-2023 Mat	rix Science	MATRIX SCIENCE

To illustrate this point. This search of the error tolerant example data from Mascot help, using one variable mod, results in 84 statically significant matches.

If the search is repeated with 7 variable mods, the individual matches have identical scores, but the significance threshold is higher and there are fewer matches overall.

All of these mods have effectively increased the size of the database by a factor of 30.

What's worse, the search takes over 50 times as long!

So, use variable mods sparingly. You'll get better results and faster.

Of all post-translational modifications, phosphorylation is one of the most interesting and also one of the most difficult. Why is it such a challenge?

Let's look at an example or two.

One of the most common phosphopeptides comes from the milk protein, beta casein. There are two potential phosphorylation sites, S and T, but only one is modified. Because the two sites are widely separated, the two arrangements get very different scores.

Beautiful spectrum; long run of y ions.

Move site to T9 and many matches would disappear.

Mascot 2.4 and later report site localisation probabilities using the delta score method published in MCP by Bernhard Kuster's group. They analysed a collection of synthetic analogs of real phosphopeptides and determined what score difference was required to determine the correct site with an error rate of (say) 5%. Because we don't expect everyone to calibrate their data in this way, we have made the calculation slightly more conservative. A score difference of 10 would give approximately 90% probability that the higher scoring arrangement was correct.

A very large score difference such as the one we were just looking at gives 100% likelihood that the phosphate is on S3.

However, casein peptides are unusually easy to analyse. Here is a more typical example of what you can expect to find - a strong match to a phosphopeptide from a protein kinase.

There is little to choose in terms of score between having the phosphate on T1 or T3.

We can see why there is little difference in score between placing the phosphate on T1 or T3.

There is just one extra matched peak, and in probability terms, there isn't a huge difference between 20 matches using 55 experimental peaks and 21. However, if you had to choose one or the other, you'd probably go for T1.

	→ C" û		🛛 🔏 www.matrixscience.co	om/cgi/peptide_view.pl?	file=%2Fdata%2F20210115%2FFTtAlxESR.dat&hit=28	⊠ ☆	*	lii\ 🗊	> ≡
NCBI (Param	or 63 ppw BLAST sea neters: blast	500 rch of T	WTLCGTPEYLAPEIILSK tein database, expect=20000, no filt	6 (Da) RHS error 63 pp	560 1000 1500 Hass (Da)				
	BLAST web		_						
All ma	tches to thi	is query		Site Analysis	1				
All ma Score	tches to the Mr(calc)	s query Delta	_	Site Analysis Phospho T1 69.17%					
All ma Score 80.4	Mr(calc) 2214.0683	Delta -0.2750	Sequence		-				
All ma Score 80.4 76.9	Mr(calc) 2214.0683 2214.0683	Delta -0.2750 -0.2750	Sequence TWTLCGTPEYLAPEIILSK	Phospho T1 69.17%	-				
All ma Score 80.4 76.9	Mr(calc) 2214.0683 2214.0683 2214.0683	Delta -0.2750 -0.2750 -0.2750	Sequence TWTLCGTPEYLAPEIILSK TWTLCGTPEYLAPEIILSK	Phospho T1 69.17% Phospho T3 30.83%					
All ma Score 80.4 76.9 38.7 18.0	Mr(calc) 2214.0683 2214.0683 2214.0683 2214.0683	Delta -0.2750 -0.2750 -0.2750 -0.2750	Sequence TWTLCGTPEYLAPEIILSK TWTLCGTPEYLAPEIILSK TWTLCGTPEYLAPEIILSK	Phospho T1 69.17% Phospho T3 30.83% Phospho T7 0.00% Phospho Y10 0.00%					
All ma Score 80.4 76.9 38.7 18.0 12.6	Mr(calc) 2214.0683 2214.0683 2214.0683 2214.0683 2214.0683 2214.0683 2214.0683	Delta -0.2750 -0.2750 -0.2750 -0.2750 -0.2750 -0.27111	Sequence TWTLCGTPEYLAPEIILSK TWTLCGTPEYLAPEIILSK TWTLCGTPEYLAPEIILSK TWTLCGTPEYLAPEIILSK	Phospho T1 69.17% Phospho T3 30.83% Phospho T7 0.00% Phospho Y10 0.00%					
All ma Score 80.4 76.9 38.7 18.0 12.6 12.6	Mr(calc) 2214.0683 2214.0683 2214.0683 2214.0683 2214.0683 2214.0683 2214.0683 2214.0683 2214.0683	Delta -0.2750 -0.2750 -0.2750 -0.2750 -0.2750 -0.2111 -0.2111	Sequence TWTLCGTPEYLAPEIILSK TWTLCGTPEYLAPEIILSK TWTLCGTPEYLAPEIILSK GGSGMLTLGIPSSPGVPAELSK	Phospho T1 69.17% Phospho T3 30.83% Phospho T7 0.00% Phospho Y10 0.00%					
All ma Score 80.4 76.9 38.7 18.0 12.6 12.6	Mr(calc) 2214.0683 2214.0683 2214.0683 2214.0683 2214.0683 2214.0643 2214.0044 2214.0044	Delta -0.2750 -0.2750 -0.2750 -0.2750 -0.2750 -0.2111 -0.2111	Sequence TWTLCGTPEYLAPEIILSK TWTLCGTPEYLAPEIILSK TWTLCGTPEYLAPEIILSK GGSGMLTLGIPSSPGVPAELSK GGSGMLTLGIPSSPGVPAELSK	Phospho T1 69.17% Phospho T3 30.83% Phospho T7 0.00% Phospho Y10 0.00%					
All ma Score 80.4 76.9 38.7 18.0 12.6 12.6 12.6 12.6	Mr(calc) 2214.0683 2214.0683 2214.0683 2214.0683 2214.0643 2214.0044 2214.0044 2214.0044 2214.0044	Delta -0.2750 -0.2750 -0.2750 -0.2750 -0.2111 -0.2111 -0.2111 -0.2111	Sequence TWTLCGTPEYLAPEIILSK TWTLCGTPEYLAPEIILSK TWTLCGTPEYLAPEIILSK TWTLCGTPEYLAPEIILSK GGSGMLTLGIPSSPGVPAELSK GGSGMLTLGIPSSPGVPAELSK GGSGMLTLGIPSSPGVPAELSK	Phospho T1 69.17% Phospho T3 30.83% Phospho T7 0.00% Phospho Y10 0.00%					
All ma Score 80.4 76.9 38.7 18.0 12.6 12.6 12.6 12.6 11.9	Mr(calc) 2214.0683 2214.0683 2214.0683 2214.0683 2214.0683 2214.0044 2214.0044 2214.0044 2214.0044	Delta -0.2750 -0.2750 -0.2750 -0.2750 -0.2750 -0.2750 -0.2111 -0.2111 -0.2111 -0.2111 -0.2111	Sequence TWTLCGTPEYLAPEIILSK TWTLCGTPEYLAPEIILSK TWTLCGTPEYLAPEIILSK GGSGMLTLGIPSSPGVPAELSK GGSGMLTLGIPSSPGVPAELSK GGSGMLTLGLPSSPGVPAELSK	Phospho T1 69.17% Phospho T3 30.83% Phospho T7 0.00% Phospho Y10 0.00% S					

The delta score site analysis suggests 70% probability on T1 and 30% on T3 ... much less clear cut. We can't be confident which site is modified, or whether there is a mixture of both isoforms. But, we can be confident it is not on T7 or Y10 because the score drops dramatically, and these are assigned 0% probability.

Sometimes, it is worth looking at the sequence annotations to see whether these are known phosphorylation sites. If the database sequence doesn't have detailed annotations, you can follow the BLAST link to try and match the peptide to an entry from a better annotated database. In this case, we're searching SwissProt, so we can go straight to the protein view report.

<u>F</u> ile <u>E</u> dit <u>V</u> iew Hi <u>s</u> t	ory <u>B</u> ookmarks <u>T</u> ools <u>H</u> elp		
Matrix Science - N	ascot - MS/F 🗙 🛛 🐘 Peptide Summary Report (/da 🗙 🛛 🗽 Mascot Sea	arch Results: KAPCA 🗙 🐰 Mascot Search Results: Peptide 🗙 📗 Mascot Search Result	s Pentide X +
		iew.pl?file=.%2Fdata%2F20210115%2FFTtAlxESR.dat&hit=KAPCA_BOVIN&db_idx	
FT	<pre>/note="Phosphoserine" /evidence="ECO:000250[UniProtKB:P05132" 196 /note="Phosphothreonine;</pre>	STRAND 322325 /evidence="ECO:0000244 PDB:4C34" STRAND 326328 /evidence="ECO:0000244 PDB:1STC" TURN 345350 /evidence="ECO:0000244 PDB:4Z84" SEQUENCE 351 AA; 40620 MW; 59DDD227D2DEEESD CRC6 MGNAAAAKKG SEQESVKEFL AKAKEDFLKK WENPAQNTAH LDQFERI VKHMETGNHY AMKILDKQKV VKLKQIFHL NEKRILQAVN FFFLVKLE MEVVPGGEMF SHLRRIG <u>RES EPHARFYAAO IVLFFYLMS LDLYRDD</u> IQVTDFFAR RVKGTWILG GTPFYLAPEI ILSM ^S GNKAV DWMLGVI ADQPIQIYEK IVSGRVRFPS HFSSDLKDLL RNLLQVDLTK RFGNLKMG TDWIAIYQRK VEAPFIPKFK GPGDTSNFDD YEEEEIRVSI NEKCGKEF	KTL GTGSFGRVML EFS FKDNSNLYMV LKP ENLLIDQQGY LIY EMAAGYPPFF SVN DIKNHKWFAT
маѕсот	: Modifications	© 2007-2023 Matrix Science	MATRIX SCIENCE

According to SwissProt, both T1 and T3 are possible phosphorylation sites. If you really needed to know which was the case here, or whether it was a mixture, you'd have to acquire more data. Maybe try a different enzyme or target the incomplete cleavage peptide that includes the preceding KG so as to move the sites towards the centre of the peptide, where you might get stronger b and y fragments.

If you are using Mascot 2.3 or earlier, the delta score calculation is not performed in Peptide View. These are our suggested guidelines when using Mascot for site analysis:

If alternative sites differ by 20 in score, safe-ish to disregard lower one(s).

If alternative sites have similar scores, you may be able to choose one by inspection. But, be careful ... one peak is just one peak.

Often, you just can't differentiate between adjacent sites, even with great data.

Now, back to the challenge of finding PT modifications. There are many hundreds of modifications in Unimod, yet I've emphasised the importance of using the minimum number of variable modifications in a search. So, how are we supposed to find unusual modifications?

If you are searching uninterpreted MS/MS data, the efficient way to find unusual modifications, as well as variations in the primary sequence, is a two pass search. The first pass search is a simple search of the entire database with minimal modifications. The protein hits found in the first pass search are then selected for an exhaustive second pass search. During this second pass search, we can look for all possible modifications, sequence variants, and non-specific cleavage products.

Because only a handful of entries are being searched, search time is not an issue. The additional matches from the second pass search serve to increase coverage and may discover interesting modifications or SNPs.

For modifications, an error tolerant search looks for one unsuspected modification per peptide in addition to those mods specified as fixed or variable. This is sufficient because it will be rare to get two unsuspected mods on a single peptide.

The error tolerant search also looks for sequence variants, such as single nucleotide polymorphisms (SNPs) or sequencing errors.

For a protein database, we can't look for the consequences of inserted or deleted bases, because these give rise to frame shifts, and the entire sequence changes from that point on.

	or Tolerant Search
	ollowing constraints apply to the standard, first pass search: Enzyme must be fully specific
	A reduced ceiling on the number of variable modifications, (default is 2, but this can be changed globally in mascot.dat or for a user group in Mascot security)
3.	Cannot be combined with quantitation
4.	Search cannot include error tolerant sequence tag
MASCOT	: Modifications © 2007-2023 Matrix Science MATRIX SCIENCE

There are some constraints on the standard, first pass search.

MASCOT	MS/MS Ions Search		
Your name	JSC Ema	il jcottrell@matrixscience.com	
Search title			
	contaminants (AA)	Amino acid (AA)	
	v (UP5640_H_sapiens (AA) v c	CRAP CRAP SARS-CoV-2 SwissProt, Jaevis UP196069, X, Jaevis UP1960, C, elegans UP2195_D_discoideum UP2119602_F_oxysporum UP2311_S_cerevisiae UP241690_T_harzianum	
Taxonomy		~	
Enzyme	Trypsin/P	0 2 v missed cleavages	
Quantitation	None 🗸		
Crosslinking	None		
Fixed modifications	Carbamidomethyl (C)	Acetyl (K) Acetyl (N-term) Acetyl (Protein N-term) Amidated (C-term) Amidated (Protein C-term)	
Variable modifications	Display all modifications Oxidation (M)	Ammonia-loss (N-term C) Carbamidomethyl (N-term) Carbamyl (K) Carbamyl (N-term) Carboxymethyl (C) Cation:Na (C-term)	
Peptide tol. ±	10 ppm v # 13C 0 v MS/MS tol.	± 0.1 Da 💙	
Peptide charge	2+ and 3+ Monoisotop	ic 💿 <u>Average</u> 🔿	
Data file	Choose file No file chosen		
Data format	Mascot generic Precurse	m/z	
Instrument	ESI-TRAP	nt 🖾 🔶	
Decoy	Target PSM FD	R 1% 🗸	
	Start Search	Reset Form	
MASCOT : Modifications	© 2007-2023 Matr	x Science	MATRIX SCIENCE

In Mascot Server 2.8 and later, we use target-decoy searching to assign significance to all matches, including those found in the second pass search.

As in previous releases, all you need to do to perform an error tolerant search is to check a box on the search form.

You can (and should) also check the box to use target-decoy. Without a decoy, expect values are derived from counting trials – that is, the number of candidate peptides that have been tested. This estimate is not always accurate; particularly when there is something wrong with the choice of database or search parameters, making a large fraction of potential matches unavailable. Ticking the checkbox to search a decoy database gives a solid, empirical basis for the statistics.

There is also a control to specify the required false discovery rate. The reason we ask for is up front is that the FDR determines the set of proteins selected for the second pass search. For example, the first pass search might identify significant peptide matches to 500 proteins at an FDR of 5%, and these are sent through to the second pass. If the FDR was reduced to 1%, the number of proteins selected for the second pass might drop to 400. Although the FDR can be tweaked at the report stage, this will not give perfectly identical results to setting the required FDR in the search form.

	Modification Carbamidomethyl Oxidation Non-specific cleavage Carbamidomethyl Deamidated Ethyl Ethyl Methyl Guanidinyl Methyl Dehydro Deamidated Dehydrated Gln->pyro-Glu Acetyl	Delta 57.021464 15.994915 57.021464 0.984016 28.031299 28.0313 14.01565 42.021792 14.01565 -1.007825 0.984016 -18.010565 -17.026532 42.010562	Type variable er fixed ET ET ET ET ET ET ET ET ET ET ET ET	Site N-term C N N-term K E N-term C Q T T N-term N-term	Total matches 644 554 400 141 63 30 27 24 22 22 21 17	
	▼Sensitivity and FDR			-		
	Protein family members		get Decoy 0	0.00%		
	PSMs v above ho			0.98%		
маѕсот	: Modifications	© 2	007 -2 023 Matrix	Science		MATRIX

When the results come back, you have a single report that combines the results from both passes.

At the top of the protein family report there is an expandable section that summarises the modifications. You can see counts of the number of queries matching fixed and variable modifications used in the first pass of the search and then for the results of the Error Tolerant search.

The sensitivity and FDR section can also be expended to see the number of decoy matches.

The way it works is that target and decoy proteins are treated as pairs. After the first pass search, when proteins are selected, each significant match, whether target or decoy, causes the relevant pair of target and decoy proteins to be selected for the second pass. This means that the target and decoy databases in the second pass search are of identical size and contain all significant peptide matches (PSMs) from the first pass.

If a query gets a significant match in the first pass search, this is what we report, and we blindly discard the second pass results for this query. Sometimes, this means a stronger match is missed, but to do otherwise would be statistically dishonest. For example, if the significance threshold for a particular query in the first pass search corresponds to a score of 40, and we get a match with a score of 52, this is what we report, even if the second pass search might give us an even better match. This is not ideal, but the alternative is to burden all matches with statistics based on both passes. To illustrate why this is a problem, imagine we were to look at the second pass results and find nothing better. Now, we have a larger search space and the score threshold has increased to 55, so we have to discard our first pass match with a score of 52 because it is no longer significant.

FDR thresholding
 Only queries that did not get a significant match in the first pass have second pass search results
 So, the sets of significant PSMs for first and second pass are disjoint (no common elements)
 The search spaces are also disjoint We never search for unmodified tryptic peptides in the second pass
 Combining two disjoint sets of PSMs, where both have 1% FDR, keeps the total FDR at 1%
MASCOT : Modifications © 2007-2023 Matrix Science

In earlier versions of Mascot, an error tolerant search could not be combined with the target-decoy option, and expect values based on counting trials were only reported for first pass matches.

However, it is possible to combine the two passes and calculate the FDR using the following logic. Only queries that did not get a significant match in the first pass have second pass search results, so the sets of significant PSMs for first and second pass are disjoint. A disjoint set is a pair of sets which does not have any common element.

The first pass and second pass search spaces are also disjoint as we never search for unmodified tryptic peptides in the second pass.

This means there is no double counting. Combining two disjoint sets of PSMs, where both have 1% FDR, keeps the total FDR at 1%.

▼Sensitivity and F	DR (reversed protein sequences)				
Note: Protein FDR 0	Target Decory FDR bers 59 0 0.00% e homology v 4279 42 0.98% % means there are not enough decoy eaningful FDR calculation. becoy becoy				
	Id for first pass search is 0.02075 , and ailable in a the decoy report.	i second pass search 0.05448 . Target PSM FD	R from combined firs	t and second pass searches is 1% .	
Proteins (59)	Report Builder Unassigned (2226	8)			
10 v per page	1 2 3 4 5 Next Expan v contains v	d all Collapse all Find	Clear		
×1	1 1::P04264 2 1::P35901 3 1::P02531 4 1::P04254 5 1::P1364	3 3 9	5826 SWISS-PRO 1977 SWISS-PRO 1772 SWISS-PRO	T:P04264 Tax_Id=9606 Gene_Symbol=kRT1 k F755908 Tax_Id=9606 Gene_Symbol=kRT2 k T:P02598 Tax_Id=9606 Gene_Symbol=kRT6A T:P04259 Tax_Id=9606 Gene_Symbol=kRT68 T:P13647 Tax_Id=9606 Gene_Symbol=kRT5 k	
€2 00000 1 000000	8 9 9 9 1 2::HSP72 2::HSP74 2 2::HSP74 3 3 2::HSP74 4 4 2::HSP73 5 5 2::B1P ¹ 6 8 8 8	_YEAST _YEAST _YEAST _YEAST _AST	10283 Heat shock p 5160 Heat shock p 4255 Heat shock p 2728 Endoplasmic	protein SSA2 OS=Saccharomyces cerevisiae (i protein SSA1 OS=Saccharomyces cerevisiae (i protein SSA4 OS=Saccharomyces cerevisiae (i protein SSA3 OS=Saccharomyces cerevisiae (i reticulum chaperone BP OS=Saccharomyces ssociated molecular chaperone SSB1 OS=Sacc	
MASCOT : Mo	difications	© 2007-2023 Matrix Scien	e		MATRIX SCIENCE

The required FDR is applied independently to the results from the first and second pass searches.

	 954 peptide matches Auto-fit to window 	173 non-duplicate, 781 duplicate)	
	Query Dupes	Observed Mr(expt) Mr(calc) ppm M Score Expect Rank U Peptide	
	m12574 12	804.4050 1606.7955 1606.8025 -4.31 0 81 3e-06 1 U N.FNGNTLONDIMLIK.L	
	m12741 11	812.3828 1622.7511 1622.7536 -1.51 0 39 0.04 1 U R.LGEHNIDVLEGNEQ.F + Carbanidomethyl (N-term)	
	#13143 > 4	827.3561 1652.6976 1652.6923 3.23 0 84 8.1e-07 🍡 U R.SCAAAGTECLISGWGN.T	
	m13307 11	830.9304 1659.8463 1659.8468 -0.25 0 68 60-05 🕨 U N.IDVLECNEOFINAAK.I	
	#13830 1	855.8650 1709.7153 1709.7137 0.94 0 65 5.8e-05 🕨 U R_SCAAAGTECLISGWGN.T * Carbanidomethyl (N-term)	
	₫13877 ▶5	857.4082 1712.8018 1712.8006 0.70 0 58 0.0006 1 U R.LGEHNIDVLEGNEOF.I	
	m14490 🕨 4	883.8943 1765.7741 1765.7764 -1.29 0 48 0.005 🕨 U R.SCAAAGTECLISGMONTK.S + 2 [-1.0078 at C2,C9]	
	m14608 18	887.9519 1773.8892 1773.8897 -0.25 0 113 2.2e-09 🕨 U H.NIDVLEGNEOFINANK.I	
	m14772	896.4172 1790.8199 1790.8258 -3.25 0 57 0.00082 1 U R.SCAAAGTECLISGWONTK.S + [-33.9877 at C9]	
	m14785 12	897.4366 1792.8566 1792.8566 1.11 0 88 60-09 🕨 U K.VCNYVNNIQOTIAAN	
	#15193 > 5	912.4043 1822.7940 1822.7978 -2.10 0 57 0.0006 1 U R_SCAAAGTECLISGMONTK.S + Carbanidomethyl (N-term); 2 [-1.0078 at C2,C9]	
	m15293 13	916.4605 1830.9065 1830.9111 -2.56 0 93 2.6e-07 🍡 U H_NIDVLEGNEQFINAAK.I + Carbanidomethyl (N-term)	
	m15889 🌬 9	941.9230 1881.8313 1881.8349 -1.90 0 114 8.5e-12 🕨 UR.SCAAAGTECLISGWONTK.S	
	#15890	628.2845 1881.8317 1881.8349 -1.72 0 48 3.50-05 ▶1 U R.SCAAAGTECLISGWGNTK.S	
	ef15914	628.6180 1882.8323 1882.8189 7.09 0 44 0.014 1 U R.SCAMAGTECLISGWGNTK.S + [+0.9840 at N16]	
	#16103 > 3	948.9313 1895.8480 1895.8506 -1.38 0 112 2.7e-09 1 U R.SCAMAOTECLISCHENTK.S + [+14.0156 at C-term K]	
	s 16220	955.9276 1909.8407 1909.8298 5.70 0 79 4.4e-06 1 U R.SCAAAOTECLISCHWATEK.S + [+27.9949 at 117] Possible assignments:	
	m16229	637.6266 1909.8581 1909.8662 -4.27 0 54 0.0018 1 U R.SCAAAGTECLISCHONTK.S + [+28.0313 at N16] Methyl (C-term) [+14.0156]	
	e16242 14	637.6288 1909.8645 1909.8662 -0.90 0 60 0.00041 1 U R.SCAAAGTECLISCHWONTK.S + [+28.031] at C-term Methyl (K) [+14.0156]	
	m16244 >9	955.9400 1909.8654 1909.8662 -0.45 0 117 8.5e-10 1 U R.SCANAGTECLISGWONTK.S + [+28.0313 at C-term K]	
	m16287	956.4820 1910.9494 1910.9486 0.43 0 47 0.01 🕨 U E.HNIDVLEGNEQFINAAK.I	
	m16330 11	957.9163 1913.8181 1913.8070 5.79 0 77 5.8e-06 1 U R.SCAAAGTECLISCWGNTK.S + [+31.9721 at w14]	
	z16432 11	962.9273 1923.8400 1923.8567 -8.68 0 85 1.2e-06 1 U R_SCAAGTECLISGWONTK.S + Carbanidomethyl (N-term); [+42.0218 at C2]	
	m16434	642.2883 1923.8430 1923.8567 -7.13 0 50 0.0035 1 U R.SCAAAGTECLISGWGNTK.S + [+42.0218 at C-term K]	
	z16469 🕨 1	963.9348 1925.8551 1925.8611 -3.12 0 65 0.00011 🕨 UR.SCAAAGTECLISGWONTK.S + [+44.0262 at G15]	
	#16485	964.9608 1927.9069 1927.9098 -1.48 0 45 0.015 🕨 U K.IITHPNFNGNTLONDIM.L	
	z 16568	969.9386 1937.8627 1937.8611 0.80 0 47 0.0085 🕨 U R.SCAAAGTECLISGMONTK.S + [+56.0262 at 512]	
	z16581 14	970.4324 1938.8502 1938.8564 -3.21 0 85 4.7e-09 🍡 U R_SCAAAGTECLISGWONTK.S + Carbamidomethyl (N-term)	
	m16582	647.2907 1938.8503 1938.8564 -3.15 0 28 0.002 ▶1 U R_SCANAGTECLISGNEATE.8 + Carbanidomethyl (N-term)	
MASCOT	: <i>M</i> o	difications © 2007-2023 Matrix Science	RIX

And the expect values are reported for both first and second pass matches.

The additional matches, found in the error tolerant search, are the ones with a mass difference in square brackets or that are a non-specific cleavage. One of these, query 12574, is a simple, non-specific peptide with a very good score. There's another example for queries 13307 and 14608. The error tolerant search is a much better way of picking up non-specific peptides than searching the entire database with semi-trypsin or no enzyme. We only fail to get such matches in an error tolerant search if there are no matches to the protein in the first pass search. However, you have to ask yourself whether you would believe a protein hit in which the only peptide match was non-specific. I think the answer is no.

	or Tolerant Sear		
0 • I1 t Q • T	OR have one primary seque f the mass delta of the mo olerance and the fragmen liminates modifications th 2->K, in most cases. The first pass match must b	be semi-specific OR have one unsu ence mutation. dification is less than the smaller t mass tolerance, the modification hat are meaningless given the estin be insignificant in its smaller searc a significant match in its larger s	of the precursor mass n is rejected. This mated mass error, like ch space while the
ASCOT	: Modifications	© 2007-2023 Matrix Science	MATRIX SCIENC

The matches from an error tolerant search are aggressively filtered to remove junk matches.

A peptide match is only allowed one error tolerant change, whether becoming semispecific or getting one unsuspected modification.

Modifications are rejected based on precursor and mass tolerance to eliminate meaningless possibilities.

And, because the second pass search space is much larger, the second pass match must have a very good score to be statistically significant, which throws away a lot of 'junk' matches.

	(173 non-duph	icate, 781 du	plicate)					
Auto-fit to window								
Query Dupes		Mr (expt)			Score	Expect		Peptide
m12574 2		1606.7955		-4.31 0		3e-06		N. FNGNTLDND IMLIK. L
12741 1		1622.7511		-1.51 0		0.04		R.LGEHNIDVLEGNEQ.F + Carbanidomethyl (N-term)
m13143 🕨 4		1652.6976		3.23 0		8.1e-07		R. SCAAAGTECLISGWON. T
m13307 1		1659.8463		-0.25 0		6e-05		N. IDVLEGNEQFINAAK. I
m13830 1		1709.7153		0.94 0		5.8e-05		R.SCAAAGTECLISGWGN.T + Carbamidomethyl (N-term)
±13877 ▶5		1712.8018		0.70 0		0.0006		R.LGEHNIDVLEGNEQF.I
m14490 🕨 4		1765.7741		-1.29 0		0.005		R.SCAAAGTECLISGWGNTK.S + 2 [-1.0078 at C2,C9]
214608 B		1773.8892		-0.25 0		2.20-09		H.NIDVLEGNEQFINAAK.I
m14772		1790.8199		-3.25 0		0.00082		R.SCAAAGTECLISGWONTK.S + [-33.9877 at C9]
d14785 12		1792.8586		1.11 0		6e-09		K.VCNYVNWIQQTIAAN
m15193 bs		1822.7940		-2.10 0		0.00066		R.SCAAAGTECLISGWGNTK.S + Carbanidomethyl (N-term); 2 [-1.0078 at C2,C9]
m15293 3 m15889 9		1830.9065		-2.56 0		2.60-07	-	H.NIDVLEGNEQFINAAK.I + Carbamidomethyl (N-term)
#15899 P 9		1881.8313 1881.8317		-1.90 0		8.5e-12		R.SCAAAGTECLISCWONTK.S R.SCAAAGTECLISCWONTK.S
#15914		1882.8323		-1.72 0		3.5e-05 0.014		R.SCAAAGTECLISGWONTK.S + (+0.9840 at N16)
m16103 >3		1895.8480		-1.38 0		2.70-09		R.SCAAAGTECLISGWGNTK.S + [+14.0156 at C-term K]
#16220		1909.8407		5.70 0		4.40-06		R.SCAAAGTECLISGWGNTK.S + [+27.9949 at 117]
#16229		1909.8581		-4.27 0		0.0018		R.SCAAAGTECLISGWGNTK.S + (+28.0313 at N16)
m16242 14		1909.8645		-0.90 0		0.00041		R.SCAAAGTECLISGWGNTK.S + [+28.0313 at C-term K]
m16244 > 9		1909.8654		-0.45 0		8.5e-10		R.SCAAAGTECLISCWGNTK.S + [+28.0313 at C-term K]
#16287		1910.9494		0.43 0		0.01		E.HNIDVLEGNEQFINARK.I
m16330 11		1913.8181		5.79 0		5.8e-06		R.SCAAAGTECLISGWGNTK.S + [+31.9721 at W14]
m16432 1		1923.8400		-8.68 0		1.20-06		R.SCAAAGTECLISGWONTK.S + Carbanidomethyl (N-term) ; [+42.0218 at C2]
af16434		1923.8430		-7.13 0		0.0035		R.SCAAAGTECLISGWONTK.S + [+42.0218 at C-term K]
m16469 11		1925.8551		-3.12 0		0.00011		R.SCAAAGTECLISGWGNTK.S + [+44.0262 at G15]
#16485		1927.9069		-1.48 0		0.015		K. IITHPNFNGNTLDNDIM. L
m16568		1937.8627		0.80 0		0.0085		R.SCAAAGTECLISGWGNTK.S + [+56.0262 at \$12]
m16581 14		1938.8502		-3.21 0		4.70-09		R.SCAAAGTECLISGWGNTK.S + Carbamidomethyl (N-term)
#16582		1938.8503		-3.15 0		0.002		R.SCAAAGTECLISGWGNTK.S + Carbamidomethyl (N-term)

Usually, the search space for the second pass search is larger than for the first pass. This means that the significance threshold is more stringent for second pass matches. Here, for example, query 16581 gets a score of 85 in the first pass search which corresponds to an expect value of 4.7E-9. Query 16432 gets the same score in the second pass search, but the expect value is 1.2E-6, worse by a factor of 250.

											38927	0.00		122
۰ ا	ET larger test search training										~	-		×
$\leftarrow \ \ \rightarrow \ \ C$	6 0) 👌 edectu	s/mascot/cgi/	/master_results	2.pl?file	=%2Fdata%	2F20230	317%2	FF00136	i1.dat:_sigthreshold=0.004 🏠	\pm	— >>	Û	\equiv
Error tolerant mo	od delta 🗸 -17.026532	Find Previ	ous Next	Clear										
Matches found	d in family 5.													
1.3 21	1::P02538	1488	60293	72 (72)	24 (24	4) SWISS-PR	OT: P0253	8 Tax_I	d=9606 0	ene_Symbol=KRT6A Keratin, type II cytoskel	etal 6A			
1.4 11	1::P04259	1328	60247	68 (68)	24 (24	4) SWISS-PR	OT: P0425	9 Tax_I	d=9606 0	ene_Symbol=KRT68 Keratin, type II cytoskel	etal 68			
1.5	1::P13647	1126	62568	55 (55)	18 (1	8) SWISS-PR	OT:P1364	7 Tax_I	d=9606 0	ene_Symbol=KRT5 Keratin, type II cytoskele	tal 5			
Redisplay Al	II None													
▼619 peptide	matches (274 non-du	uplicate, 345	duplicate)											
Auto-fit to														
Query Du	observed	Mr (expt)	Mr(calc)	ppm M	Score	Expect	Rank	U 1 2	3 4 5	Peptide				
ef3123		1078.5272	1078.5295	-2.13 0	40	0.009	11			K.AQYEEIAQR.S + [-28.0061 at C-t	erm R]			
ef3202 🕨		1083.4855		-4.78 0	54	4.4e-06	▶1	υ		R.DVDNAYMIR.V + Oxidation (M)				
ef3309		1089.5264		-3.51 0	53	0.00043		U 🔳		R.TLLEGEESR.M + [+57.0215 at N-t	erm T]			
ef3330 🕨		1091.4916				3.2e-05				R.0S000SS00SI0GR.0 Possible a				
m 3347 1		1092.5162		-3.42 0		0.00028	1			K. AQYEEIANR. S Carbamido K. RYLDGLTAER. T + [-99 Carbamido	nethyl (N-	term) [+5	7.0215	1
m3537		1106.5326				4.4e-05 3.1e-07	0.00	· .		K. AQYEELAQR. S		[-37.021	.,	
#3587 b		1110.5618				2.3e-07				R.ISISTSGOSPR.N				
ef3677		1117.5748				0.014	0.7			R. FLEQONQVL.Q				
d3789 1		1124.5332				1.7e-08	2.7			K. AEAESLYQSK. Y				
#3885 ba	566.2566	1130.4987	1130.5026	-3.48 0	56	2.4e-06	11	υ .		R.STSSFSCLSR.H				
ef3909	567.2815	1132.5485	1132.5546	-5.42 1	32	0.0028	11			R. KLLEGEECR				
ef3977	570.2805	1138.5464	1138.5506	-3.63 0	40	0.011	1	υ.		K.AEAESLYQSK.Y + [+14.0156 at E2	1			
ef3978 🕨	-	1138.5730		-3.62 0		0.0014	1	υ.		Y.FESFINNLR.R				
ef4002		1140.5071				2.6e-06	1	υ 🔳		R. DYQELMNTR. L				
214041 b		1142.6141				2e-07	-	0		R. LAELEEALOR. A				
±4143 ▶: ±4146		1151.5416				3.7e-05 0.0044				NKYEDEINK.R NKYEDEINK.R				
14168 ba		1154.5229				1.4e-05				R.DYQELMNVK.L + Oxidation (M)				
1194 b		1156.5035				6.9e-07				R.DYQELMNTK.L + Oxidation (M)				
m4232 b		1157.5553				0.0064		υ .		R. LNDLEDALQQ.A				
#4384 ba	1 582.7835	1163.5524	1163.5571	-3.99 0	50	0.001	11			E.AQYEEIAQR.S + [+57.0215 at N-t	erm]			
#4408 ba	2 583.2958	1164.5771	1164.5775	-0.36 0	69	4.2e-07	11			R. YEELQVTAGR. H				
df4437	583.7863	1165.5581	1165.5615	-2.89 1	41	0.011	12			NEYEDEINK.R + [+14.0156 at E6]				
£4455	584.2781	1166.5417	1166.5455	-3.22 0	47	0.0022	11	U .		R.AEAESLYQSK.Y + [+42.0106 at N-				
64488		1167.5843				0.0027		U		R.ISISTSOGSFR.N + [+57.0215 at N	-term]			
#4505 b	1 585.2770	1168.5394	1168.5434	-3.41 0	33	0.0013	1			K. EYQELMNVK.L + Oxidation (M)				
: M	lodificatio	ons				© 20	007-202	3 Ma	atrix S	cience				

Take a look at the match to query 3309, which has three possible assignments. Since this sample was alkylated with iodoacetamide, we would choose carbamidomethylation as the more likely suspect. The assignment to carbamidomethylation at the N-terminal is also very believable, because this is a known artefact of over-alkylation. The same modification can be seen in this screen shot for three other queries.

	a s farmed in family									
Matci	nes found in family	5.								
			6			6	-			
5.1	@2::P0CS90		2737	Mass 70585	Matches 116 (116)	Sequence 34 (3		notor sub	bunit,	mitochondrial OS=Saccharomyces cerevisiae (strain ATCC 204508 / S288c) OX=559292 GN=SSC1 PE=1 SV=1
			2101	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		51 (5	.,,			
V11	5 peptide matches (70 non-dup	licate, 46 du	plicate)						
A	uto-fit to window									
	Query Dupes	Observed	Mr(expt)	Mr (cal	c) ppp	M Score	Expect	Dank		Peptide
			1.00.0010		1.00	• ••	0.00 00	· ·	×	T Koom un manut .
	8025		1414.7054				0.011			R.VQGGEEVNAEELK.T + [+14.0156 at E10]
	8057 1		1417.6622				8.4e-10			K. ADQLANDTENSLK. E
	18523		1457.6960				0.006			R.VQGGEEVNAEELK.T + [+57.0215 at N-term]
	18664		1474.6851				0.0054			K.ADQLANDTENSLK.E + [+57.0215 at N-term]
	19026 3		1507.8748			0 84	3.6e-09		U	K.LIGNFTLAGIPPAPK.G
	d'9046	755.4444	1508.8742	1508.87	33 0.64	0 55	0.00019	▶1		K.LIGNFTLAGIPPAPK.G + [+0.9970 at N-term L]
	d'9085	757.8959	1513.7772	1513.77		0 72	1.1e-05	▶1	υ	R.QAVVNPENTLFATK.R + [-17.026532 at N-term]
	19243 1	766.4087	1530.8029	1530.80	42 -0.87	0 87	6.2e-09	▶1		R. QAVVNPENTLEATK.R
	19674		1564.8980				7e-05			Gln->pyro-Glu (N-term Q) [-17.0265]
	d'9860	527.6145	1579.8217	1579.82	79 -3.95	2 35	0.0012	▶1	U	K.MKETAEAYLGKPVK.N + Oxidation (19)
	19862	790.9210	1579.8274	1579.82	79 -0.31	2 61	2.6e-06	▶1	υ	K.MKETAEAYLGKPVK.N + Oxidation (M)
	19929	794.9176	1587.8207	1587.82	57 -3.14	0 55	0.00062	▶1	U	R.QAVVNPENTLFATK.R + [+57.0215 at N-term]
đ	10566 1	549.2972	1644.8697	1644.87	23 -1.54	0 72	2e-07	▶1	U	R. VVNEPTAAALAYGLEK. S
්	10567 ▶ 3	823.4424	1644.8702	1644.87	23 -1.26	0 102	1.8e-10	▶1	U	R. VVNEPTAAALAYGLEK. S
đ	10908	833.9230	1665.8314	1665.82	44 4.22	0 53	0.00093	▶1	U	L.STSDISEVLLVGGMSR.M + Oxidation (M)
N	ASCOT	:	Modifi	catior	ns			© 20	07-2	023 Matrix Science
- *										SCIENCE

Another easily believable assignment is pyro-Glu for the match to query 11185.

	L	ET larger test search trainin	9 co. × +								~	-		×
$\leftarrow \rightarrow$	C) 👌 eclectu	s /mascot/cgi/ma	ister_results_	2.pl?file	=_%2Fdata	%2F202	30317%2FF0	01361.dat:_sigthreshold=0.004- 🏠		* =	> û	=
Error tole	ierant n	nod delta 🗸 -48.003371	Find Previ	ous Next Cle	Nar									
Matche	s fou	nd in family 2.												
Aut	to-fit I	to window												
07	ery D	upes Observed	Mr(expt)	Mr(calc)	ppm M	Score	Expect	Rank	U 1 2 3	4 Peptide				
	574		1309.6839	1309.6878	-2.93 0	40	0.002		U	K.ELQDIANPIMSK.L + (-48.00337	1 at H101			
	632	657.3133	1312.6120	1312.6122	-0.15 0	46	0.0031			R.FEELCADLFR.S + [+14.0156 at		e assignme		1
ef 6	634	657.3728	1312.7310	1312.7351	-3.09 1	63	6e-05	Þ1		R.STLDPVERVLR.D + [+57.0215 at	Dethion	e assignme iethyl (M) [-	48.0034]	
	5760		1321.6883		0.42 0	65	4.7e-05			R.NQLESIAYSLR.N + [+57.0215 at				
	5860		1330.6987		-3.52 0	44	0.0061			R.LVNHFIGEFE.R + [+57.0215 at				
	5861		1330.6999		-2.60 0	46	0.0038		••	R.LVNHFIGEFK.R + [+57.0215 at	N-term]			
	977		1336.6452		-4.38 0	40 69	0.0003 2.6e-07			K.ETAENFLOTEVK.D	-			
	7054 7098		1342.6325 1344.6854		-8.45 1 -2.30 0	69 87	2.6e-07 6.1e-09			K.MKETAESYLGAK.V + Oxidation K.DVDDIVLVOOSTR.I	(00)			
	140		1349.6174		-2.77 1	46	4.8e-05		÷ .	K.FKAEDEORAOR.V				
	217		1355.6780		1.90 0	67	2.8e-05			K.ELQDIANPINSK.L + Oxidation	00 / [-18.	106 at N-te	rm)	
	218		1355.6789		2.50 0		0.00011			K.ELQEVANPIMSK.L + Oxidation				
	268		1357.6895		-1.17 0	76	5.8e-08		υ	K. ELQEVANPINSK. L				
e 7 7	286	680.3243	1358.6339	1358.6387	-3.59 1	70	1.2e-05	Þ1		K.MRETAESYLGAR.V + Oxidation	(0) : [+15.)	949 at \$2]		
ef7	7314	681.8806	1361.7467	1361.7442	1.86 0	65	3.7e-05	Þ1		S.LLSIEDGIFEVR.A				
	506		1373.6843		-1.26 0		2.1e-07		U 🔳	K.ELQDIANPIMSK.L + Oxidation				
	1507		1373.6855		-0.40 0		3.3e-09		U 🔳	R.ELQEVANPIMSR.L + Oxidation	(30)			
	7521		1374.6635		0.65 1	42	0.0095		••	R.NTISEAGDRLEQA.D				
	7542 7571		1377.6364		-3.46 1	52	6.7e-06		υ	R. KFDDPEVTNDAR. H				
	1629		1380.6591		-0.32 0	69	2.1e-05			K.NFTPEQISSMVL.0 + Oxidation				
	1668		1384.6476 1387.6982		-4.93 1 -2.54 0	40 62	0.012			K.MKETAESYLGAR.V + Oxidation K.ELQEVANPIMSK.L + Oxidation				
	678		1388.7122		-1.80 0	85	4.6e-07			A.AVQAAILTODESSK.T	(4) / [-14.			
	692		1389.6766		-3.10 0	46	0.0041		U	K.ELQDIANPIMSK.L + [+31.9898	at M101			
	716		1391.6533		-2.56 1	54	0.00051			K. KAEETISWLDSN.T				
87	724	697.3026	1392.5905	1392.5980	-5.33 0	43	5.5e-05	Þ1	U .	R.NPNDPEVQGDMR.H				
e 7 7	774	698.8388	1395.6630	1395.6680	-3.58 0	40	0.016	Þ1	U .	K.ELQDIANPIMSK.L + Oxidation	(0) : [+21.]	819 at D4]		
	7839		1399.6586		-4.77 1	48	0.0019			K.MRETAESYLGAR.V + Oxidation		215 at #2]		
	7865		1400.6927		-3.04 0		0.00049		υ 🔳	K.ELQEVANPIMSK.L + [+43.0058	at M10]			
	7894		1404.5906		-0.032 0	34	0.023			A. GDTHLGGEDFDSR. L				
	7913		1406.6106		-2.17 0	61	7.3e-07		•	R.NPNDPEVQADME.H				
	1936 1973		1408.5869		-4.27 0	74 37	4.4e-08 0.026		U	R.NFNDPEVQODMR.H + Oxidation				
	1040		1412.6473		-1.42 1	40	0.026			K.MKETAESYLGAR.V + Oxidation K.ELQEVANPINSK.L + Oxidation				
	105		1422.6086		0.065 0	70	1e-07			R.NFNDPEVQADME.H + Oxidation		210 81 8-08		
	132		1423.5911		-1.04 0	74	2.30-06			R.NFNDPEVQADME.H + Oxidation		140 at N-ter	. 11	
	179		1425.7141		0.097 0		4.5e-09			R. VOOLLESYFDOR. R				
eft	1309	719.3176	1436.6206	1436.6242	-2.51 0	79	1.1e-06	Þ1	υ .	R.NFNDPEVQADME.H + Oxidation	(8) : [+14.	156 at E6]		
▶1 sub	iset or	intersection (1 subset	protein in tot	ai)										
: 1	Mo	odificatio	ons					©	2007-20	23 Matrix Science				

Query 6574 is an interesting case. There are multiple other matches to the same peptide, oxidised at M10, oxidised at M10 with pyro-Glu at the N-term, dioxidation at M10 and others. The minus 48 modification occurs when the methionine is oxidised and then loses the side chain as methanesulfenic acid.

	ET larger test	and training of	v .								~				4
$\leftarrow \rightarrow$	CO	0 0	d eclectus	mascot/cgi/m	aster_results_	2.pl?file	%2Fdata%		0317%2FFC	1361.dat:_sigthreshold=0.004		* =	>>	ວ =	2
Error toler	ant mod delta 👻 -	48.003371 F	ind Previo	is Next C	lear										
Matches	found in family	2.													
Auto	-fit to window														
Que	ry Dupes	Observed M	Mr(expt)	Mr(calc)	ppm M	Score	Expect	Rank	U 1 2 3	Peptide					
	51 P14	600.3412 11			0.64 0		4.30-11			R.DAOTIAGLNVLR.I					
ef 50	12 11	602.3382 11	202.6619	1202.6659	-3.37 1	64	1.5e-06	11	U .	R. OCKPVVQVEYR. C					
	22 11	605.3293 13			-0.096 0	76	6.7e-08			R. LVNFLAEEPE.R					
	98 3	607.8081 13			-2.90 0		1.9e-06			R.VDIIANDQONR.T					
ef52 ef53		608.3054 12			5.96 0	36	0.027			R.VDIIANDQGNR.7 + [+0.9840 at C	-term R]				
ef 53 ef 53		613.3412 11			-2.85 1	47	0.002			R.LIDVDORPQIQ.V R.DAOTIAGLNVLR.I + [+26.0156 at	N-term!				
	30 12	614.8150 11			-4.25 0	60	2.5e-06			R.VEIIANDONR.T	a contail				
ef 53		615.3090 11			-1.03 0	38	0.014		0	R.VEIIANDQONR.T + [+0.9840 at N	6]				
ef 53	75	617.3143 13	232.6141	1232.6183	-3.41 0	38	0.023	11		R.DAOTIAGLNVLR.I + [+33.9513 at	Lasj				
#154	89 12	620.8373 12	239.6601		-0.82 0		0.00032			R.FELSGIPPAPR.G + [+57.0215 at	I-term)				
									Katarina\s	dified trypsin\cerevisiae\Ju9.raw]					
efss		621.3471 11			-7.33 0		2.8e-05			R.DAOTIAGLNVLR.I + (+42.0218 at					
6.53	V 3	021.3471 14	240.0797	1240.0000	1.72 0		2.80-05			K.DAOTIAGLNVLR.I + [+42.0106 at					
					1.72 0		0.13			K.DAGTIAGLNVLR.I + [+42.0 Poss	ible assign	ments:			
					-7.35 1		0.15			LDADPSLORVR + [-27.99 Acet	d (N-term)	[+42.010	6]	063	
					-7.35 1		1.8			LDADFSLQRVR + [-27.99		e term) (++2.01	100)	
					1.69 0		1.8			DAGQIVGLNVLR + [-13.0316 at					
					-4.22 1 7.49 0		0.4			MEKGQIAGR + 3 [+84.0575 at SVVTVIDVFYK + [-28.0313 at					
					1.72 0		8.7			DAGAISGLNVLR + (+56.0262 at					
					0.37 1	10	9.4	10		EVEAAATAANTE + Oxidation ()	0 : [+34.05]	14 at C-t	ern K)		
	34 11	622.8134 12			-2.75 0	53	1.3e-05		0	R.TEILANEQONR.I					
	40 15	623.8354 12			-3.46 0	76	3.4e-06			R. IINEPTAAAIAY.G					
ef57	07 2	628.8147 11 633.3374 11			-0.65 0	63 59	5.8e-05			R.VEIIANDQONR.T + [+27.9949 at] R.NQLESIAYSLR.N	a-cerm)				
ef 5 5		634.3329 12			1.28 0		1.1e-05		U	K.FESLNLDLFK.K					
	01 11	636.3181 11			-3.84 0	42	0.0059			R.VDIIANDQONR.T + (+57.0215 at)	02]				
efss		636.3194 11			-1.83 0	54	0.0004			R.VDIIANDQONR.T + [+57.0215 at					
	17 13	637.8480 13			-0.35 0	61	3.2e-06	11		R.LVNHFIGEFE.R					
dec		425.5679 12			0.049 0	33	0.0021			R.LVNHFIGEFE.R					
dec		638.3391 11			-1.74 0		0.00011			R.LVNHFIGEFR.R + [+0.9840 at B3					
ದೆ ಕಾ	15 14	640.3332 13			2.29 0	41	8.5e-09			L.SLGIETAGGVNTK.L + Oxidation (
de2		644.8518 11 645.7879 11			-6.59 0	41	0.013			R.LVNHFIQEFK.R + [+14.0156 at Q R.FEELCADLFR.S + [+47.9847 at C					
d63		645.8456 11			-0.16 0		0.00078			R.LVNHFIGEFE.R + [+15.9949 at 8					
	04 14	650.3065 11			1.52 0		4.8e-09			R.FEELCADLFR.S					
264	32	651.3229 13	300.6313	1300.6371	-4.48 0	52	0.00079	Þ1	υ	R.TEILANEQGNR.I + (+57.0215 at)	I-term Tl				
▶1 subs	et or intersection	(1 subset prot	tein in total)											
				-											-,
F :/	Nodific	ation	15					02	007-20	3 Matrix Science					
	no anno	- autori						- U Z	001-201	J MIGUIA SCIENCE					

You should also look at the other matches to the same query when trying to decide whether to accept a match or not. For this query the top three matches are essentially to the same sequence. The error tolerant match is to a peptide that has undergone a guanidinylation or acetylation at the N-terminal or acetylation of the threonine. Although the guanidinylation PTM is know to occur the most likely interpretation for this match is Protein N-terminal acetylation. The precursor measurement error slightly favors acetylation, 1.72ppm, vs guanidinylation at -7.33ppm.

🔹 🐛 Automatic	error tolerant search × +		~ – 🗆 X
$\leftarrow \rightarrow$ C m	O 👌 archive-win10/mascot_2_7_00/cgi/master_m	esults_2.pl?file=_%2Fdata%2FF981130.dat;_ignoreions 🗉 🏠	😇 坐 📵 🔤 » =
Accession	contains v	Find Clear	
NO 2.02	1000.0220 3202.0400 3203.0000 -0.0000 0 11	. T'ALAO NI O V'ATEMATETATATATETASSOAAEAASSAA'I	
1 subset or intersection	on (1 subset protein in total)		
-			
₹7	RPN2_HUMAN	113 Dolichyl-diphosphooligosaccharideprotein glycosyltransf	erase subunit 2 OS=Homo sapie
	Score Mass Matches Sequer		
7.1 #RPN2_HU 2 sames	MAN 113 69355 3 (2) 3 ets of RPN2_HUMAN	3 (2) Dolichyl-diphosphooligosaccharideprotein glycosyltransferase subunit 2	OS=Homo sapiens OX=9606 GN=RPN2 PE=1
▼3 peptide matches (3	non-duplicate, 0 duplicate)		
Auto-fit to window			
Query Dupes	Observed Mr(expt) Mr(calc) Delta M Scor	e Expect Rank U Peptide	
#50 #139	539.6746 1077.3347 1077.5818 -0.2471 0 60 766.7314 1531.4482 1531.7518 -0.3036 0 80		
z 246	766.7314 2297.1723 2297.2318 -0.0594 1 68	U R.LHNQKTGQEVVFVAEPDNK.N + (+145.1)	
		Pos	sible assignments: u4plex118 (K) [+145.1405]
1 subset or intersection	on (3 subset proteins in total)	DiLe	u4plex (K) [+145.1322] u4plex117 (K) [+145.1283]
		DiLe	u4plex115 (K) [+145.1200] thiopropanoyl (K) [+145.0197]
▶8	BASI_BOVIN	104 Basigin (Fragment) OS=Bos taurus OX=9913 GN=BSG P	==2 SV=1
▶9	KPYM_HUMAN	92 Pyruvate kinase PKM OS=Homo sapiens OX=9606 GN=P	KM PE=1 SV=4
▶10	CBPM_HUMAN	83 Carboxypeptidase M OS=Homo saplens OX=9606 GN=CP	M PE=1 SV=2
10 v per page 1	2 3 Next Expand all Collapse all		
Not what you expected? Try 2t	e peptide summary.		
		://www.matrixscience.com/	
		11. 	
ASCOT : M	odifications	© 2007-2023 Matrix Science	MAT
	ounoutono	SEVULEVES MAULA SCIENCE	

I do not have a good solution for this match. The modifications are either from DiLeu labelled quantitation experiments or a side product in crosslinking while the sample will have been exposed to neither of these two scenarios. Most likely the +145 at the C terminal is a combination of modifications in the C-terminal region but I don't know exactly what.

It is important to understand that the error tolerant search finds new matches by introducing mass shifts at different positions in the database sequences. The match may be very strong, but figuring out a credible assignment can require a bit of detective work.

To summarise, it's best to exclude isotopic labels and very large modifications from error tolerant searching. You should specify very abundant modifications as variable modifications, so you don't miss doubly modified peptides.

Even when the FDR for PSMs is well controlled, the FDR for proteins will often be high for an error tolerant search because only a few entries are searched in the second pass.

	Format Significance threshold p< Target FDR (overrides sig. threshold) Display non-sig. matches Error tolerant matches: Preferred taxonomy	0.02075 Max. number of families 1% VFDR type Min. number of sig. unique sequences Reliable Dendrograms cut at All entries	AUTO PSM v 1 v 0
	PSMs v above homology v 4279 42 0 Format Significance threshold p	0.02075 Max. number of families	AUTO d'[help]
			PSM v 2 v 0
MASCOT	: Modifications	© 2007-2023 Matrix Science	MATRIX SCIENCE

In this example search, at 1% FDR for PSMs, the protein FDR is 23%, which sounds awful. This is simply because the 42 significant decoy matches are scattered randomly across 20 decoy proteins. If we increase the 'Min. number of sig. unique sequences' from 1 to 2 and choose 'Format', we eliminate one hit wonders, and the protein FDR drops to a more satisfactory 0%.

In summary, an error tolerant search:

•Can successfully locate mass differences corresponding to a single unsuspected modification or a single SNP per peptide

•User must decide on best explanation for the observed differences

•Limited to proteins which have at least one good peptide match ... not very useful for (say) MHC peptides