

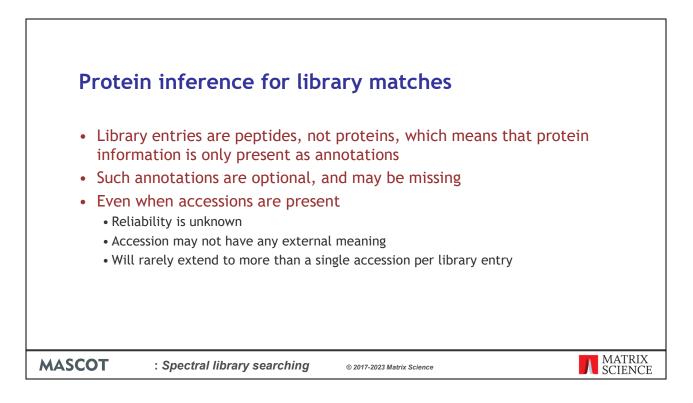
Spectral libraries	
 Spectral library contains annotated MS/MS spectra Match observed spectra directly to library spectra Advantages Faster and more specific than database search Easily search non-tryptic peptides or uncommon modifications Disadvantages Only identifies peptides that exist in the library Requires good measurement reproducibility Creating high-quality libraries is time consuming 	
MASCOT : Spectral library searching © 2017-2023 Matrix Science	MATRIX SCIENCE

A spectral library is a collection of annotated MS/MS spectra of peptides. Instead of searching observed spectra against a protein sequence database, you search the observed spectra directly against a spectral library. The observed peaks are compared to the annotated library peaks, then scored in some way based on similarity. Typically, the similarity score takes advantage of peak intensity patterns as well as peak masses. It may also utilise peak annotations, such as giving a higher score to b and y ion matches.

There are several advantages compared to protein sequence databases. A library search is often much faster than a database search, as spectral library typically has orders of magnitude fewer peptides than a tryptic digest of a sequence database. A library search can also be more specific than a database search, for example if it contains previously identified non-tryptic peptides or uncommon variable modifications. Selecting a semi-specific enzyme or including many uncommon variable modifications in a database search greatly increases the search duration. Searching a pre-prepared library of spectra of semi-specific peptides is much faster.

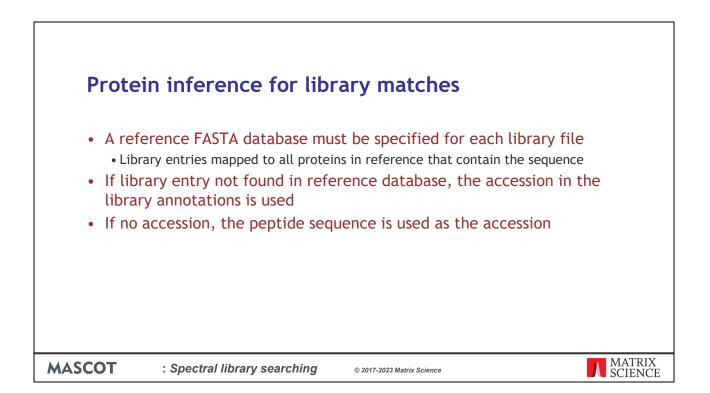
There are no free lunches, so of course spectral library searching has weaknesses. You can only identify peptides for which a spectrum exists in the library. If the library contains a peptide sequence with one missed cleavage, you will not get a match to a peptide with two missed cleavages. A library search also requires decent measurement reproducibility. If peak intensities vary wildly between repeat runs, it is harder to get a good library match. Finally, creating high-quality libraries is time consuming and

some care is needed. Fortunately, Mascot ships with several predefined spectral libraries to help you get started.


маѕсот	MS/MS Ions Search			
Your name	ShirleyJackson V	Email		
Search title				
Database(s)	NIST_S.cerevesiae_IonTrap (SL)	× <	Test_DNA ZEST_human Spectral ibrary (SL) MasSIVE_HumanHCD NIST_HBA_IonTrap NIST_HBA_IonTrap NIST_HAMBA_HCD NIST_HUMAN_LONTrap NIST_Rat_QTof PMLPIZ_SL PRIDE_Contaminants	
Taxonomy	All entries	v		
Peptide tol. :	10 ppm v # ¹³ C 0 v	MS/MS tol. ±	0.6 Da v	
Peptide charge	2+ ~	Monoisotopic	Average	
Data file	Browse No file selected.			
Data forma	Mascot generic 🗸	Precursor	m/z	
Instrumen	Default v	Error tolerant		
Deco		Target PSM FDR	(no target) v	
	Start Search		Reset Form	
MASCOT : Spectral libr	ary searching	© 2017-2023 Matrix Scienc	e	MATRIX SCIENCE

Mascot Server can search spectral libraries using MSPepSearch from Steven Stein's group at NIST. When submitting a search, any combination of amino acid FASTA or nucleic acid FASTA databases, and spectral libraries can be selected. Here, we perform a simple search of some data from CPTAC study 6 against a NIST yeast library

Most search parameters – modifications, enzyme, missed cleavages, taxonomy, and instrument – simply don't apply to a library search. All that matters is how well the experimental spectrum matches the one in the library. The main exceptions are the precursor and fragment mass tolerances.


	💗 👢 Year SL example (Marcot San: X) + V - 🗆 X	
	← → C 🙆 🖄 🔿 🗅 localinost/master_results_2.pi/Nes-%2Fdata%2F20230713% 🏠 🛃 🛃 20 » ≡	
	MATRIX MASCOT Search Results User : ShirleyJackson E-mail :	
	Search title : Veast 5L example MS date file : bic_03109e,ptac_atudy6_68011.mgf	
	Database : NIST_5.cerevesiae_IonTrap 20108006 (92,609 library entries) Timestamp : 13 Jul 2023 at 19:10-24 Z GMT	
	Re-search 🔞 All 🔾 Non-significant 🔾 Unassigned et (help) Export As XML 🗸	
	PSearch parameters	
	Score distribution	
	Hodification statistics for all protein families Legend	
	Protein Family Summary	
	Format Significance threshold 300 Max. number of families AUTO Image: AUTO Display non-sig. matches Image: Min. number of sig. unique sequences	
	Dendrograms cut at 0	
	▶ Sensitivity	
	Proteins (976) Beport Builder Unassigned (3884) 6. permaink	
	Protein families 1-10 (out of 929)	
	10 v per page 1 2 2 4 5 6 9 23 Next Expand all Collopse all	
	Accession v contains v Find Clear	
	▶1 KPYKL_YEAST 24012 Pyruvate kinase 1 08=5actharomyces cerevisiae (atrain	
	A Construction of the second	
	R ■ 1 HSP72_YEAST 16177 Heat shock protein S542 05=Satcharomyces cerevisiae (
	ra into verter into the production and the states all office interventions of the states all off	_
MASCOT	: Spectral library searching © 2017-2023 Matrix Science MATRIX SCIENCE	3

On completion of the search, the matches are reported in a protein family summary. In order to generate such a report, we need reliable and accurate protein inference.

The are some difficulties associated with Protein inference for library matches. First of all, library entries are peptides, not proteins, which means that protein information is only ever present as annotations. Such annotations are optional, and may be missing, as in the case of most PRIDE libraries.

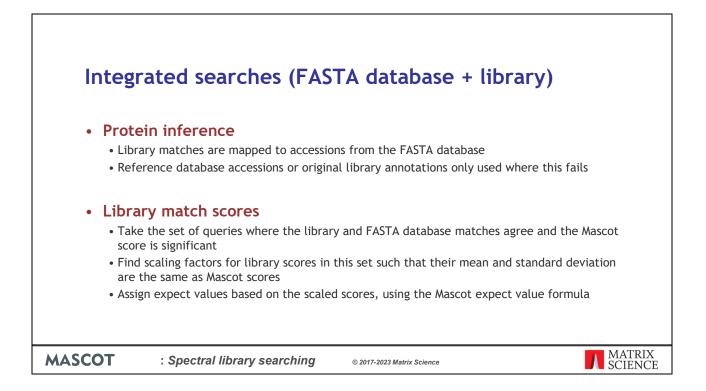
Even when present, the reliability is unknown. The accession could be a meaningless number or string. And, I've never seen a library with more than a single accession per library entry, so protein inference will be inaccurate for shared peptides.

Our solution is to require a reference FASTA database to be assigned to each library file when it is added to the system. The default is SwissProt, with an appropriate taxonomy filter, but any online FASTA database can be chosen. This allows Mascot to map most of the library peptides to accessions in the reference database. This mapping is done at the sequence level, with no constraints from enzyme specificity. If a library entry has a novel sequence, not found in the reference database, the accession in the library annotations is used. If there is no accession, the peptide sequence is treated as the accession, so that duplicate matches to the same peptide can be grouped, if nothing else.

	Vent SL example (Mascot Sear: X + V - C X
	+ -> C 🔝 2 O D localhost/mascot/ogi/master_results_2pl?lile=.%2Fdata%2F20230713%; 🏠 🖄 🖆 3 >> =
	SCIENCE MASCOT Search Results
	User : ShirleyJackson E-mail :
	Search title : Yeart 54, example MS data file : KL, 031308, p.p.tac_study6_68011.mgf
	Database : NIST_S.cerevesiae_IonTrap 20180806 (92,609 library entries)
	Timestamp : 13 Jul 2023 at 19:10:42 GMT
	Re-search 🔞 All O Non-significant O Unassigned c?[heip] Export As 204. V
	Search parameters
	• Score distribution
	Modification statistics for all protein families Legend Legend
	Protein Family Summary
	Format Significance threshold 300 Max. number of families AUTO d'[help]
	Display non-sig. matches D Min. number of sig. unique sequences 1 v
	Dendrograms cut at 0
	▶ sensitivity
	Proteins (976) Report Builder Unassigned (1884) S.permaink
	Protein families 1–10 (out of 929)
	10 v per page 1 2 3 4 5 6 92 Next Expand all Collapse all
	Accession v contants v Pind Clear
	▶1 KPYK1_YLAST 24012 Pyruvate kinase 1.05-discharomyces cerevisie (strain
	2 1 G3P3_YEAST 17399 Glyceraldehyde-3-phosphate dehydrogenase 3 OS=Sacc
	2 G3P2_VEAST 19495 Upceraldehyde-3-bosphate ddhydogaesa 2 05-8cc. 3 G3P1_VEAST 7854 Upceraldehyde-3-bosphate ddhydogaesa 2 05-8cc.
	Turning and the second s
	3 1 HSP72_YEAST 16177 Heat shock protein 6542 OS=Saccharomyces cerevisiae (4 RID VEAST 2054 Endonlarmic rationium charanna RID filosaurona RID filosaurona
MASCOT	: Spectral library searching © 2017-2023 Matrix Science MATRIX SCIENCE

Here's the library search report again. Protein inference allows us to create a report for library matches that is near identical to a report for FASTA database matches.

Accession	~ cont	ains v					Find Cle	ear						
			Score	Mass	Matches	Sequences								
2.1	dG3P3_YEAST	r		35724	49 (49)		yceraldehyde-3	-phosphate del	ydrogenas	e 3 OS=Sad	ccharo	myces cer	revisiae (s	strai
2.2	dG3P2_YEAST	r	14945	35824	42 (42)	25 (25) G	yceraldehyde-3	-phosphate deh	ydrogenas	e 2 OS=Sad	ccharo	myces cer	revisiae (s	strai
2.3	dG3P1_YEAST	r	7854	35728	25 (25)	18 (18) G	yceraldehyde-3	-phosphate deh	ydrogenas	e 1 OS=Sad	ccharo	myces cer	revisiae (s	itrai
Redispla	ay All None													
	tide matches (52 - fit to window	non-auplicate	e, 6 aupric	ate)										
0116	ry Dupes	Observed	Mr (e	met 1	Mr(calc)	ppm M	Score Sour	ce Ernec	Rank	U 1 2	3 0	entide		
	61	356.193320	710.37		710.371155		881 SL	7.7e-0				HIDAGA	K.K	
24		386.722490	771.43		771.431152	-0.94 0		3.8e-0			_		AR.V + 0	arba
ef 4	93 1	391.231490	780.44		780.449356		795 SL	5.6e-0		U 🔳		HIIVDO		
ef 5	88	398.211920	794.40	9288	794.410950	-2.09 0	559 SL	0.0001			E K		R.V	
e 1 7	11	406.209580	810.40	4608	810.405746	-1.40 0	651 SL	1.5e-0	▶1		K	LTOMAR	PR.V + 0	lxida
ef 9	02	418.188710	834.36	2868	834.361954	1.10 0	689 SL	6.4e-0	5 1		= K	YDSTHO	R.Y	
e ' 9	30 1	420.714160	839.41	3768	839.413757	0.013 0	609 SL	4.1e-0	b 1		K	. TVDGPS	HK.D	
ef9	83	424.247500	846.48	0448	846.471146	11.0 0	317 SL	0.03	1 ▶2	σ	R	. IAINGE	GR.I	
ef11	15	432.731200	863.44	7848	863.450150	-2.67 0	360 SL	0.01	3 1 1	U 🔳	K	IATFOR	R.D	
ef12	50 1	440.729020	879.44	3488	879.444946	-1.66 0	762 SL	1.2e-0	5 1		K	. IATYQE	R.D	
ef14	87	303.855100	908.54	3472	908.544220	-0.82 0	501 SL	0.0004	▶1	U 🔳	K	HIIVDG	RK.I	
ef15	82	459.760750	917.50	6948	917.508347	-1.52 0	699 SL	5.1e-0	5 1	U 🔳	K	HIIVDG	HK.I	
ef15	84 🕨 1	306.843510	917.50	8702	917.508224	0.52 0	740 SL	2e-0	5 🕨 1	U 🔳	K	HIIVDG	HK.I	
e 1 24	75	504.776920	1007.53	9288	1007.539948	-0.66 0	722 SL	3e-0	5 1			RIATYO	ER.D	
ef24	76 1	336.854040	1007.54	0292	1007.540024	0.27 0	808 SL	4.26-0	1 11		•	RIATYO	ER.D	
ef24	85	505.286620	1008.55	8688	1008.560349	-1.65 0	557 SL	0.0001	3 🕨 1		v	VDLVEN	IVAR. A	
ef29		526.756780	1051.49	9008	1051.500748	-1.65 0	558 SL	0.0001	3 🕨 1		M	. FVMGVN	EEK.Y	
ef30		533.745390	1065.47		1065.475952		340 SL		2 🕨 1				CTTN.C	+ Ca
ef32		544.818290			1087.624954		590 SL	6.3e-0				.VRVAIN		
ef32		363.548720	1087.62		1087.625031		498 SL	0.0005				.VRVAIN		
ef32		548.286890	1094.55		1094.560745		479 SL	0.0008		σ		BATYDO		
ef34		554.820710	1107.62		1107.628754	-1.70 0		7.1e-0				VVDLVE		
ef 34		370.216590	1107.62		1107.628723		629 SL	2.6e-0				. VVDLVE		
ef 34		560.747290			1119.483353		910 SL	4e-0				. YAGEVS		
ef 34					1119.483231		539 SL	0.000				. YAGEVS		
e ' 35		376.192180	1125.55		1125.555527		589 SL	6.4e-0				. ETTYDE		
ef38		387.694620	773.37		773.374146		530 SL	0.0002		U	_	AAAEGP		
ef 40		590.338830					760 SL	1.3e-0					SHVARA.	
ef 40	30	393.895710	1178.66	5302	1178.665726	-0.36 0	389 SL	0.006	1 1		R	. VVDLVE	HVARA.	-


If only libraries are searched, MSPepSearch scores are converted to arbitrary expect values. A score of 300 becomes an expect value of 0.05 and the maximum score of 1000 becomes an expect of 5E-9.

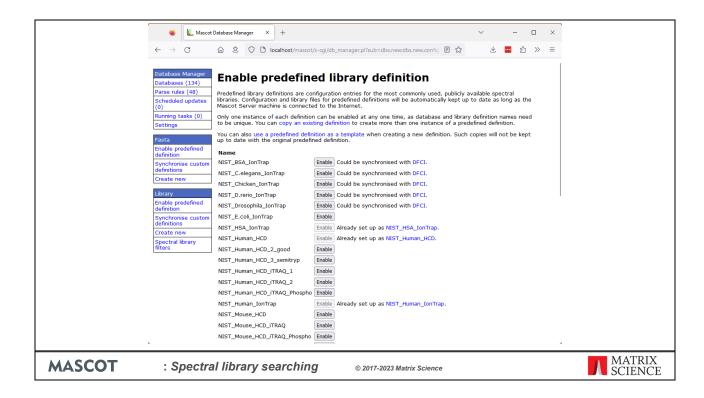
	MASCOT	MS/MS Ions Search			
	Your name	ShirleyJackson 🗸	Email		
	Search title	Yeast SL example			
=	Database(s)	FungiDB_EST (NA) NIST_S.cerevesiae_IonTrap (SL) UP2311_S_cerevisiae (AA)	X	UniProt_Pseudomon_asaerugino Uniprot_Rice UniProt_Rust UP2494_R_norvegicus UP290289_Malus_domestica UP29965_C_sabaeus UP526_T_rubripes UP564_H_sapiens UP589_M_musculus 119635_E_coli_V12	
	Peptide tol. ±	10 ppm v # ¹³ C 0 v	MS/MS tol. ±	0.6 Da 🗸	
	Dentide dense	2.	Manalastasia	A	
	Peptide charge		Monoisotopic	• Average O	
	Data file	klc_031308p_cptac_study6_6B011.mgf	Monoisotopic	• Average ()	
	Data file	klc_031308p_cptac_study6_6B011.mgf Mascot generic	Monoisotopic Error tolerant		
	Data file Data format Instrument	klc_031308p_cptac_study6_6B011.mgf Mascot generic ESI-TRAP v	Error tolerant		
	Data file Data format	klc_031308p_cptac_study6_6B011.mgf Mascot generic ESI-TRAP v		(no target) v	
	Data file Data format Instrument	klc_031308p_cptac_study6_6B011.mgf Mascot generic ESI-TRAP v	Error tolerant		
MASCOT	Data file Data format Instrument Decoy	klc_031308p_cptac_study6_6B011.mgf Mascot generic ESI-TRAP v	Error tolerant	(no target) v	M

Let's expand this example and search a mixture of amino acid and nucleic acid databases with a spectral library.

	💗 🗽 Yeart St, example (Mascot Sear: X) + V - 🗆 X
	← → C
	← → O W ≤ O D companymasse_reuna_c/mmer_acrossecrectures/merec
	MATRIXE MASCOT Search Results
	User : ShifelyJackson E-mail : Search title : Yeast SL example M5 data file : Mc_0J1308p.cptac_shudy6_68011.mgf Database : 11: Furj08_EFT 64 (12,547,206 sequences; 2,675,132,930 residues) 21: MST_5_cerrevisia(_06)@sequences; 2,695,292 residues) 31: UP3115_cerrevisia(_06)@sequences; 2,695,292 residues) 31: UP3115_cerrevisia(_06)@sequences; 2,695,292 residues)
	Timestamp : 29 Aug 2023 at 21:26:54 GMT
	Re-search 🔞 All 🔿 Non-significant 🔾 Unassigned "{[high] Export As 2011. v
	Search parameters Score distribution
	Source descentions Additional statistics for all protein families
) Legend
	Protein Family Summary
	Format Significance threshold p-c 0.05 Max. number of families AUTO or(help) Display non-sig, matches Min. number of sig., unique sequences 1 v <
	▶ Sensitivity
	Proteins (773) Report Builder Unassigned (5201) S. permaink
	Protein families 1–10 (out of 706)
	10 v per page 1 (2) (3) (5) (6 - [72] Heat Depend all Colleges all
	Accession v contains v Find Clear
	▶1 3::P00549 1678 Pyrvvate kinase 1 05=5acharomyces cerevisiae (strain
	 ▶ 2 1 3::P00359 1207 0)vereidshyder 2-bjesphate dehydroganase 3 OS=Sacch. 2 3::P00358 1031 0)vereidshyder 2-bjesphate dehydroganase 2 OS=Sacch. 8 8 9 8 °
MASCOT :	Spectral library searching © 2017-2023 Matrix Science MATRIX SCIENCE

Here is the report from the search. We can see all three databases listed at the top of the result report, and each is assigned an index so that we know where each accession comes from. The top hit has an index 3 which corresponds to the UniProt proteome. There are two important differences between this 'integrated' report and a library-only report.

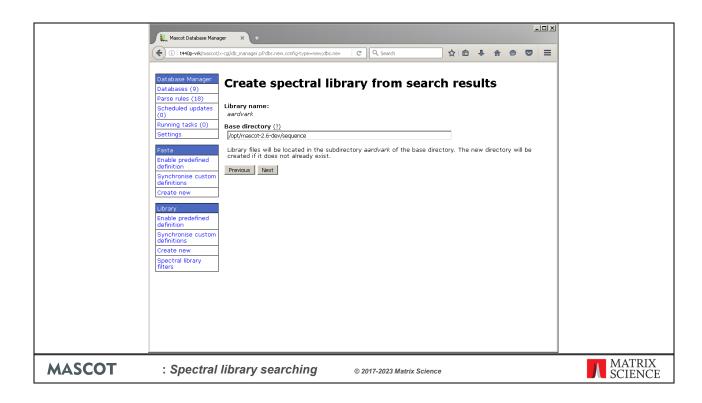
For protein inference, if the peptide sequence can be mapped to one of the FASTA databases being searched, this becomes the preferred accession. The accession from the reference database is only used when this fails.


In an integrated search, we can use the FASTA database matches to create a simple empirical estimate of library score significance. This is achieved by calibrating library scores based on the set of queries where the library and FASTA database searches return the same match and the Mascot score is significant. The shapes of the library and Mascot score distributions in this set are similar and they often have a fairly high correlation. Next, scale these library scores so that they have the same mean and standard deviation as Mascot scores. This produces values on the same scale as Mascot scores. We can now assign expect values to library matches using the same expression as for Mascot matches.

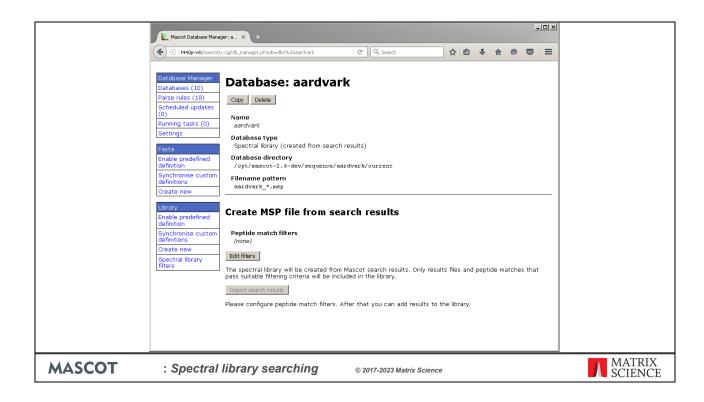
	0531/F002318.d × +														
(€) 🕕 t440p-vi	rk/mascot/cgi/master_results	_2.pl?file=%2F	data%2F201705	31%2FF0023	C	Q. Search	1		☆	Ê	+	^ 9	9 6	7 =	
Accession	💌 contains 💌					Find		ear							-
)	f3::N1P8V5 11 samesets of 3::		9 54510	Matches 54 (54)		iences 35 (35)	emPA1 1 37.28		te kina	ase OS	S=Saccha	aromyce	is cerevi	isiae	
	matches (46 non-du	plicate, 8 dı	iplicate)												
🗹 Auto-fit t	o window														
Query Dupes	Observed	Mr(expt)	Mr(calc)	ppm M	Score	Source	Expect	t Rank	υ	Pept	tide				
₫5352	672.8765 1	343.7385	1343.7409	-1.73 0	100	AA	1.6e-07	7 1	υ	R.LI	ISLNVV	AGSDLR	R.R		
g 5426	452.5921 1			-1.62 0	582		0.00019				INPETL				
₫5427	452.5922 1			-1.36 0	361		0.017				INNPET				
₫5702	465.2392			-0.95 0	330		0.033				WHMVF			xid	
₫6394	500.5497 1	498.6272	1498.6298	-1.72 0	462	SL	0.0022				FSHGS				
₫6395	375.6646 1	498.6292	1498.6299	-0.48 0	532	SL	0.00052	2 1	U	R.M	FSHGS	УЕУНК.	s		
₫6405	750.9274 1	499.8402	1499.8419	-1.16 0	591	SL	0.00016	6 ▶ 1	U	R.LT	ISLNVV	AGSDLR	R.T		
₫6406	500.9544 1	499.8415	1499.8421	-0.42 0	468	SL	0.0019	9 ▶1	U	R.LT	SLNVV	AGSDLR	R.T		
₫6412	751.4172 1	500.8199	1500.8235	-2.42 0	641	SL	5.6e-03	5 1	U	к. УБ	RPNCPI	ILVTR	.c + c	arb	_
₫6415	501.2814 1	500.8224	1500.8234	-0.68 0	481	SL	0.0015	5 🕨 1	U	К. УБ	RPNCPI	ILVTR	.c + c	arh	
₫6501	759.8380 1	517.6615	1517.6634	-1.29 0	59	AA	1.7e-0	5 🕨 1	U	K.EF	VSDWT	DDVEAR	ι.1		
₫7417	575.6394 1	723.8963	1723.8992	-1.71 0	387	SL	0.01	1 11	U	K. 64	NLPGT	DVDLPA	LSEK.	D	
₫7418	862.9557 1	723.8969	1723.8992	-1.32 0	24	NA	0.022	2 🕨 1	U	K. 64	/NLPGT	DVDLPA	iSEK		
₫7507 ▶1	874.9940 1	747.9734	1747.9720	0.83 0	821	SL	1.4e-06	6 🕨 1	U	R.GE	DLGIEI	PAPEVL	AVQK.	ĸ	
₫7547	880.9423 1	759.8701	1759.8741	-2.23 0	48	AA	0.00025	5 🕨 1	U	K.IF	ENQQGVI	NNFDEI	LK.V		
₫7917	937.0048 1	871.9950	1871.9991	-2.21 0	586	SL	0.00017	7 🕨 1	U	K.SE	EELYPG	RPLAIA	LDTK.	6	
₫ 7918	625.0063 1	.871.9970	1871.9993	-1.27 0	530	SL	0.00054	1 1	U	K.SE	EELYPG	RPLAIA	LDTK.	G	
≥ 8195	667.7041	000.0905	2000.0942	-1.86 0	463	SL	0.0021	1 🕨 1	U	R.KS	SEELYP	GRPLAI	LALDTK	C. G	
₫ 8196	1001.0531	2000.0916	2000.0942	-1.27 1	46		0.00044				SEELYP				
₫8197	501.0305 1	000.0929	2000.0943	-0.70 0	435	SL	0.0038				SEELYP				
₫8206	670.0106	007.0100	2007.0158	-2.89 0	510	SL	0.00082	2 1	U	K.P1	ISTTET	VAASAV	AAVFE	QК	
28233	1011.4730	020.9314	2020.9377	-3.12 0	755	SL	5.				FEKEPV:				
₫8588	621.0749	480.2705	2480.2759	-2.18 0	549	SL	0.00037				NLPGT				
₫8618	870.1036	607.2890	2607.2849	1.56 0	426	SL	0.0046	5 🕨 1	U	R.N.	C TPKP T	STTET	VAASAV	7AA	-
: Sp	ectral libra	ry sea	rching		© 201	7-2023 N	Aatrix Sci	ence							

Here, the top hit has been expanded. You can see that the top ranking PSMs come from both library and FASTA database. In most cases, the same match is found in two or all three databases, and the listed match is the one with the lowest expect value. An exception can be seen here for query 8233. This peptide is non-specific at the amino terminus and is only found in the library. It will not be matched in the FASTA database because the enzyme for the search was strict trypsin.

Parse rules (16)	Name	Mode ?	Type ?	Status			Latest task
Scheduled updates (0)	3UTRrtFull_ncbi	custom	NA	In use		Deactivate	
(0) Running tasks (1)	contaminants	predefined	AA	In use	Get new files	Deactivate	Update succeeded (view log)
Settings	cRAP	predefined	AA	In use	Get new files	Deactivate	Update succeeded (view log)
	Mus_musculus_GRCm39_genomic	custom	NA	In use		Deactivate	
Fasta	NCBIprot	predefined	AA	In use	Get new files	Deactivate	Update succeeded (view log)
Enable predefined definition	PRIDE_Contaminants	predefined	SL	In use	Get new files	Deactivate	Update succeeded (view log)
Synchronise custom	SARS-CoV-2	predefined	AA	In use	Get new files	Deactivate	Update succeeded (view log)
definitions	SwissProt	predefined	AA	In use	Get new files	Deactivate	Update succeeded (view log)
Create new	TGAtoAGA_ReadthroughProtein2	custom	AA	In use		Deactivate	
Library	UP5640_H_sapiens	predefined	AA	In use	Get new files	Deactivate	Update succeeded (view log)
Enable predefined	UP589_M_musculus	predefined	AA	In use	Get new files	Deactivate	Update succeeded (view log)
definition	UP625_E_coli_K12	predefined	AA	In use	Get new files	Deactivate	Downloading (0.0%)
Synchronise custom definitions	UP6548_A_thaliana	predefined	AA	In use	Get new files	Deactivate	Update succeeded (view log)
Create new	UP9136_B_taurus	predefined	AA	In use	Get new files	Deactivate	Update succeeded (view log)
Spectral library filters	Vertebrates_EST	predefined	NA	In use	Get new files	Deactivate	Update succeeded (view log)
litters	Human_EST	predefined	NA	Offline	Get new files	Activate	Update succeeded (view log)
	UniRef100	predefined	AA	Offline	Get new files	Activate	Update succeeded (view log)
	Latest predefined definitions files databases_20230803T100411.xml libraries_20221013T122738.xml). Full database status is available o) and Thu C	oct 13 08:	27:38 20	2023 (FASTA d 22 (spectral li	databases: braries:	
	Refresh						


Let's turn our attention to administration aspects. Library files in NIST MSP format are handled in Database Manager much the same as Sequence databases in FASTA format. This slide shows the top level screen of Database Manager, with a mixture of FASTA databases and libraries configured for searching. The 'Type' column shows which are AA or NA FASTA and which are spectral library. Most have 'predefined' configuration settings – that is, Matrix Science maintains a master file of configuration settings that is downloaded by Database Manager.

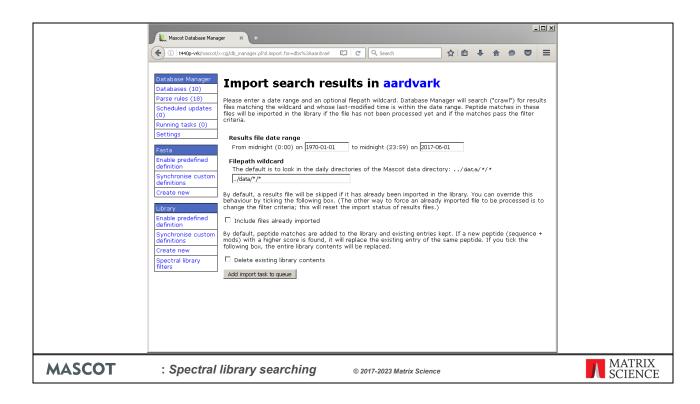
To enable a predefined library is a matter of a few mouse clicks.


If the library you want to search is not on the predefined list, you use the 'Create New' Wizard to configure it as a custom database. A particularly interesting case is if you want to create your own library from Mascot search results. This is easily accomplished, as illustrated in the next few slides. Suppose that we are working on aardvark and want to make a custom library for the aardvark proteome. We choose a name and select 'Create from search results'.

The next screen just gives an opportunity to change the default location for the files.

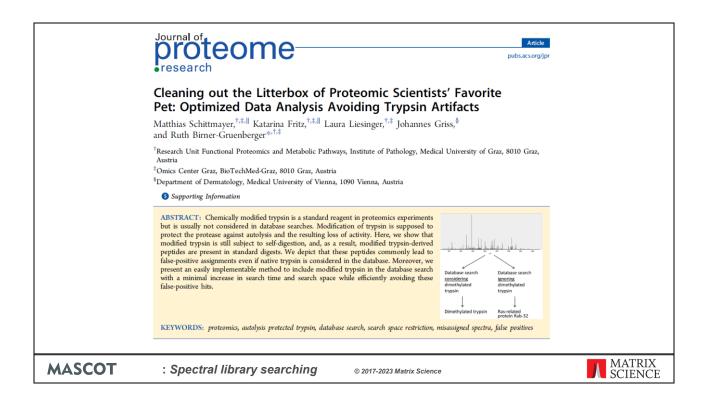
	Mascot Database Manager × +	
	🔄 🖯 t440p-vrk/mascot/x-cg/db_manager.pl?dbs.new.base_path=%2Fopt% 🗊 C 🔍 Search 🟠 🖨 🗍 🔗 💟 🚍	
	Database Manager Database (9) Parse rules (18) Scheduld updates (0) Scheduld updates (0) Settings Parse rules (18) Scheduld updates (18) Scheduld updates (18) Settings Parse rules (18) Scheduld updates (18) Settings Parse rules (18) Settings Settings Parse rules (18) Synchronise custom Create new Synchronise custom Create new Synchronise custom Synchronise custom Create new Synchronise custom Synchronise custom Create new Spectral library Mitters of the selected reference database has taxonomy configured, you can optionally choose a taxonomy for reference accessions. Create new Spectral library Spectral library MSM tolerance Next netwer scharts for the absolute and relative tolerances of the fragment masses in the	
MASCOT	: Spectral library searching © 2017-2023 Matrix Science	MATRIX SCIENCE

The reference database is used to assign protein accessions to the library entries. Normally, you wouldn't choose NCBIprot because it is such a large and redundant database. But, since SwissProt only contains 10 aardvark entries, we don't have much choice. We must also provide an estimate of suitable MS/MS tolerances for the library contents. If the search results come from multiple instruments, you need to base this on the least accurate of them.


Peptide match filters are used to select matches for inclusion in the library. We choose 'Edit filters'.

	Mascot Database Manager × +
	🔄 🕐 🕐 😰 🔄 🖾 🕹 🕐 🐨 🔄
	Peptide match filters for aardvark
	The library must have at least one score or expect value filter, typically expect < 0.01.
	Each individual filter is in a filter group. To add more filters to the group, use the OR button. To add more groups, use the AND button. The peptide match must pass all filter groups to be accepted, but within each group, only one filter needs to succeed.
	To remove a filter, leave its value field empty. To remove a filter group, remove all its filters.
	Filters are used in two complementary ways:
	 When Database Manager chooses results files to process, only files that might contain suitable peptide matches are included. When Database Manager loops over peptide matches in a results file, only matches that pass the filter are imported to the library.
	For example, if you have a fitter DB = SwissProc and no other DB fitters, then only results files that were searched against SwissProt are processed. (Or in a multi-database search, had SwissProt as one of the databases.) When Database Manager loops over its peptide matches, only those that actually come from SwissProt are imported.
	Expect value V < 0.01 OR
	Score V > V 50 OR AND
	Taxonomy V C is C is not Aardvark V OR
	Cancel Test Save
ASCOT	: Spectral library searching © 2017-2023 Matrix Science

There is a lot of flexibility here. This would be a simple filter for PSMs that can be assigned to a specific organism. We only want strong, confident matches in our library, so we require the match to have an expect value less than 0.01 and a score greater than 50. If the set of search results includes duplicate PSMs, only the one with the highest score goes into the library. We choose Save ...



Which takes us back to the previous page, and we are ready to import search results.

The only other thing we need to decide is which search result files to crawl. This can be specified as a date range or a wild card file path or some combination of the two. Finally, we add the import task to the queue and the selected files will be crawled as a background task.

You can even schedule automatic updates for such a database, which means that matches can be imported from new result files, created since the last import.

Let's look at a practical example of how these new features might be used. This JPR paper reminded us that sequencing grade trypsin is modified by methylation or acetylation of the lysines. Unless these variable modifications are selected in a search, simply including a contaminants database will not be sufficient to catch all trypsin autolysis peptides. The authors suggested a solution based on editing the sequence of trypsin in the FASTA, replacing K with J, and defining J as the mass of dimethylated lysine. This is fine, as far as it goes, but it misses many of the other modifications that are present, not to mention extensive non-specific cleavage.

Creating a	trypsin library	
	ata set from PRIDE al" set of mods with error tolerant searches	
Search with	these mods against SwissProt	
Type of search Enzyme Fixed modifications Variable modifications Mass values Protein mass Peptide mass tolerance Fragment mass tolerance Max missed cleavages Instrument type Number of queries	: MS/MS Ion Search : semiTrypsin : d'Carbanidomethyl (C) : d'Carbanidomethyl (N-term), d'Methyl (N, d'Methyl (N-term), d'Dimethyl (N-term), d'Dehydro (C), d'Deamidated (NQ) : Monoisotopic : Unrestricted : ± 10 ppm : ± 0.5 Da : ± 0.5 Da : £SI-TRAP : 26,505	
MASCOT : Spec	tral library searching © 2017-2023 Matrix Science	MATRIX SCIENCE

We downloaded the raw files for one of the data sets in this study from PRIDE and tried a variety of error tolerant searches to discover exactly what was present. Based on these results, we chose these search settings. The enzyme specificity was semiTrypsin because peptides show very extensive C-terminal 'ragged ends'.

• La	-	PIG ma	Low set tches PIG KAT HUMAN BOVIN Matches 714 (714) 15 (15) 10 (10)	ensitivity, bu	ut many match stral library "T Carbanidomethyl Deamidated Carbanidomethyl Deamidated Methyl Deamidated Methyl Dehydro Dimethyl		
MASCOT		ctral librar			2023 Matrix Science		MATRIX

This makes the search space very large, but we do get many matches to trypsin and many modified peptides. The search takes a long time and overall sensitivity is not as good as it would be for a simple search with strict trypsin and only one or two variable modifications.

The answer, of course, is to make a library of the trypsin matches and include this in the vanilla search. This is a very powerful option, since it allows any number of modified and non-specific peptides from any number of contaminants to be intercepted with no increase in the search space.

	rk small (Mascot Searc	× +						\sim		-		×
$\leftarrow \rightarrow$ C \textcircled{a}	00	ē≘ localhost/	mascot/cgi/n	naster_results_2.pl?file=	.%2Fdata%2F202212	16%2FF001353.d	lat 110%	\$ \bigtriangledown	\pm	R	• »	\equiv
Search title : Bench MS data file : C:\Pro Databases : 1: Swi 2: Tryp Timestamp : 16 Dec	gramData\Matrix ssProt 2021_04 osin 20221216 (1	565,928 seq 13 library en	uences; 20			daemon_merg	e.mgf					
Re-search O All	O Non-significar	nt 🔿 Unassig	ned 🛃[h	Export	As XML	~						
Type of search Enzyme Fixed modificati Variable modific Mass values Protein mass Peptide mass to Fragment mass	: Tryp ons : d'Ca ations : d'Ox : Mon : Unre lerance : ± 20 tolerance : ± 0.	rbamidometh idation (M) oisotopic estricted) ppm										
Max missed clea Instrument type Number of queri	ESI-											
	ies : 99,2											
Instrument type Number of queri	: ESI- ies : 99,2	99										

Here, we search Swissprot plus the tryptic autolysis library with strict trypsin and a single variable mod - yet still obtain matches to all the modified and non-specific trypsin autolysis peptides.

Accession	✓ contains ✓						Find	Clear							
		Score	Mass	Matches	Sequ	iences	emP	AI							
✓ 1.1	1::TRYP_PIG	21980	25078	689 (689)	1	17 (17)	141.8	88 Trypsin	OS=Sus s	crofa OX=982	23 PE=1 SV=1				
🗹 1.2 🛛 💕	1::TRY2_HUMAN	1266	26927	50 (50)		6 (6)	1.9	90 Trypsin-	2 OS=Hor	no sapiens O	X=9606 GN=PRSS2 PE=1 SV=1				
🗹 1.3 🛛 🗹	1::TRY1_HUMAN	845	27111	37 (37)		5 (5)	1.8	89 Trypsin-	1 OS=Hor	no sapiens O	X=9606 GN=PRSS1 PE=1 SV=1				
Redisplay	II None														
▼751 peptide	matches (49 non-duplic	cate, 702 duj	olicate)												
🗹 Auto-fit to															
Query Du		Mr (expt) 1198.6021	Mr (cal			ore Sou		Expect 7.3e-05		U 1 2 3	Peptide K.VYNYVDWIK.D				
₫56785 ▶		1431.7349				241 SL		0.00031		×	VLEGNEQFINAAK.I				
m64125	-	1525.7542				63 SL		0.027		U D	K.SSGSSYPSLLQCLK.A + Carbamidomethyl				
₫64984 ▶		1539.8497				50 AA		0.00026		U	R.VSTISLPTAPPATGTK.C				
± 64992	514.2911	1539.8514	1539.85	08 0.4	0 0	26 AA		0.026	1	U	R.VSTISLPTAPPATGTK.C				
2 69486	3 804.4077	1606.8009	1606.80	13 -0.3	0 0 2	240 SL		0.00031	▶1	U 🔳	N. FNGNTLDNDIMLIK.L				
🖬 69540 🕨	5 804.8999	1607.7853	1607.78	54 -0.02	9 0 3	318 SL		4.4e-05	▶1	U 🔳	N.FNGNTLDNDIMLIK.L + Deamidated				
d 72330 🕨	2 830.3964	1658.7783	1658.77	97 -0.8	30 1	L16 AA		4.8e-10	▶1	U	K.ITSNMFCVGFLEGGK.D				
d 72402 🕨	3 830.9299	1659.8452	1659.84	57 -0.3	30 2	247 SL		0.00026	▶1	U 🔳	N. IDVLEGNEQFINAAK. I				
₫ 73239	838.3940	1674.7735	1674.77	46 -0.6	30	16 AA		0.047	▶1	U	K.ITSNMFCVGFLEGGK.D + Oxidation (M)				
d 73805 🕨	•	1685.7889	1685.79	06 -0.9	80 1	L10 AA		2.9e-10	▶1	U 🔳	K.ITNNMFCVGFLEGGK.D				
₫ 74563 🕨	-	1701.7838	1701.78	55 -0.9		75 AA		1.3e-06	▶1	U 🔳	K.ITNNMFCVGFLEGGK.D + Oxidation (M)				
2 75100	-	1712.7993				245 SL		0.00028		U 🔳	R.LGEHNIDVLEGNEQF.I				
₫ 77710 🕨	•	1773.8886				320 SL		4.2e-05		U	H.NIDVLEGNEQFINAAK.I				
278418		1793.8056				47 SL		0.04		U	R.SCAAAGTECLISGWGNTK.S + 2 Dehydrated	; Dimethyl	L		
m 83420 🕨		1928.8922				245 SL		0.00028		U 🔳	K.IITHPNFNGNTLDNDIM.L + Deamidated				
₫83739 🕨		1939.9261				388 SL		7.5e-06		U	R.LGEHNIDVLEGNEQFIN.A				
# 85509	-	2010.9646				214 SL 304 SL		0.0006		υ 🔳	R.LGEHNIDVLEGNEQFINA.A				
₫86963 ₫87233	-	2082.0012 2097.0112				268 SL		6.2e-05 0.00015		U .	R. LGEHNIDVLEGNEQFINAA.K				
±89578 ►		2097.0112				100 AA		2.3e-08		U	G.EHNIDVLEGNEQFINAAK.I + Carbamidomet	nyı			
±89832 ►		2210.0915				100 AA 132 AA		2.3e-08		U	R.LGEHNIDVLEGNEQFINAAK.I R.LGEHNIDVLEGNEQFINAAK.I				
±899832 ►		2210.0954				40 AA		0.0017		U	R.LGEHNIDVLEGNEOFINAAK.I R.LGEHNIDVLEGNEOFINAAK.I				
		2210.0960				10 AA 269 SL		0.00015		U	R.LGEHNIDVLEGNEQFINAAK.I R.LGEHNIDVLEGNEQFINAAK.I + Deamidated				
₫90099 🕨						102 DT		0.00015	F 1	•	K. BOBINIE PROVINCE A DOME AND A				

This removes 776 spectra which otherwise might have given rise to false positives.

If you're wondering about the ridiculous emPAI value, it's because the assumption behind emPAI is strict tryptic cleavage. However, the library search is giving all kinds of semitryptic matches, so the model assumptions are not satisfied.

Sumr	nary		
• Masco	ot Server uses NIST MSPepSearc	h for spectral library searches	
• You c	can search any combination of F	FASTA databases and spectral li	braries
Resul	ts are presented using the prot	ein family summary report	
A reference	erence FASTA database is assigr ence	ned to each library file to ensu	re accurate protein
matc	n integrated search, library ma hes that have significant Masco thes agree	the second se	
MSP f	files are configured and updated	d just like FASTA databases	
• Libra	ries can be created by importin	g results from searches against	FASTA databases

To summarise.