

In this presentation we will cover quantitation methods that use the data in the peak list, also known as MS2 based methods.

emPAI quantitation offers approximate, label-free, relative quantitation of the proteins in a mixture based on protein coverage by the peptide matches in a database search result. This approach was developed by Ishihama and colleagues.

It is very simple. It is also very approximate, because there are many arbitrary assumptions in the way that the number of observed and observable peptides are calculated. Nevertheless, Ishihama's paper shows that it can be a useful guide to relative amounts. emPAI doesn't require a label or special data processing, so it is always reported in a standard Mascot results report, as long as the number of MS/MS spectra is at least 100.

Multiplex is quantitation based on the relative intensities of sequence ion fragment peaks within an MS/MS spectrum. This approach, developed Zhang and Neubert, can be used with any chemistry that labels one peptide terminus and has a reasonably small mass shift.

This diagram, copied from the MCP paper, illustrates how it works. On the left, we have conventional quantitation; the 'precursor protocol' in Mascot terms. This requires the precursor intensity for each component to be integrated across its elution profile. In the case of the multiplex protocol, the MS1 transmission window is set wide enough to allow both components through simultaneously, giving a mixed MS/MS spectrum. The relative amounts can be measured from the sequence ions that include the labelled terminus. If the label is on the carboxy terminus, we see the ratios in the y ions.

Quantitation - multiplex	
 Requirements: Label confined to one peptide terminus e.g. ¹⁸O, or SILAC at K or R with trypsin MS1 transmission window must be ~ flat over the label delta Heavy and light pair must be 'isolated' in survey scan Heavy and light must ~ co-elute Label must not affect fragmentation kinetics Tough to extend to more than 2 components. 	
MASCOT : Quantitation © 2007-2023 Matrix Science	MATRIX SCIENCE

Г

The multiplex method has the potential to give excellent precision, because each ratio is represented by multiple sequence ion pairs. On the other hand, the ratio will only be accurate if several constraints are met.

٦

Quantitation - multiplex	
Isobaric Peptide Termini Labeling (IPTL):	
 Koehler, C. J., et al., Isobaric Peptide Termini Labeling for MS/MS-Basec Quantitative Proteomics, J. Proteome Research 8 4333-4341 (2009) 	1
• Label both termini	
 Heavy and light have equal and opposite shifts, e.g. 	
Component 1:	
Succinyl d0 at the N-term and IMID d4 at C-term	
Component 2:	
Succinyl d4 at the N-term and IMID d0 at C-term	
MASCOT : Quantitation © 2007-2023 Matrix Science	MATRIX SCIENCE

Isobaric Peptide Termini Labeling (IPTL) is an improvement to multiplex. This labels both termini and the difference between the two components is a mass increase at one terminus exactly balanced by a mass decrease at the other. Having isobaric precursors removes the requirement for the transmission window between MS1 and MS2 to be wide enough to accommodate the mass shift introduced by the label.

This is an example of Multiplex using a dataset courtesy of Zhang and Neubert. The instrument was an ion trap and the label is 13C(6) SILAC on K and R.

We can see that the heavy component has been strongly up-regulated in this peptide from human ephrin.

	Mascot search engine Protein X	Mascot configuration	× +		~	- 🗆 X	
4		marcatly callers config avoius	1608051802		17062 C* 1900	🛃 🔿 💷 N =	
		mascoryx-cgi/ms-comig.exeru =			Bishard Insel		
	Edit Quant	itation Method:1	180 multiplex		Kichard Jacob	J	
	Name						
	Name 180 multiplex		Description Zhang and	Neubert, MCP 5 401-411	(2006), 95% enrichment		
	Method Protocol	Component Report Ratio	Integration Quality	Outliers Normalisatio	n XML		
	Component						
	Components:	1802 ¥	New Copy	Delete			
	Property	Value			Action	Satellite peaks	
	Modification groups	Variable group 1		Delete	Add Modification Group	to higher m/z	
	Corrections	Type: impurity	✓ Shift:			due to natural	
		Element: 0 v	5.0	Delete		abundance of ¹³ C	
		Type: impurity	Shift:				
		Element: 180 v	95.0	Delete	Add correction	Satallita poaks	
						to lower m/z	
	Save changes Can	cei				due to under-	
	help willdow					enrichment	
					4		
					111.		
MASCOT	: Quantitation	© 20	07-2023 Matrix Scien	ce		A MATRI	X CE

One of the complications of any type of isotope labelling is isotope impurity. It is rarely possible to get 100% enrichment. In the Mascot quantitation schema, this is described by a correction element. An 'impurity' correction works "downwards". That is, in this 180 method, some of the intensity of peptides labelled with the 180 label will appear at lower mass values because the heavy water is only 95% enriched. A second type of isotope correction, 'averagine', works "upwards". This describes how some of the intensity will be found at higher mass values because of the natural abundances of heavy isotopes. An averagine correction only matters when the mass delta is small, as in the case of 180 labelling.

(2) M	ascot configuration - Microsoft Interne	et Explorer			
Ele	e Edit View Favorites Iools Help				
	🕽 Back 🔹 🕥 🕤 📓 🏠 🔎				
i Addr	ress 🕘 http://t41-jsc/mascot/x-cgi/ms-config.e	xxe?u=1179673330		💌 🔁 GO	
	Edit Quantita	ation Method:iTRAQ 8plex		^	
	Name				
	Name iTRAQ 8plex	Description Applied Biosysten	ns iTRAQ(TM) 8-plex reagent		
	Method Protocol	Component Report Ratio Integration Qualit	y Outliers Normalisation		
	Component				
	Components:	113 V New Copy Delet	e -		
	Property	Value	Action		
	Component	113		Arbitrary	
	M/Z	Monoisotopic : 113.107873 Average : 113	.1808	satellite peaks	
	Corrections	Type: As certificate Shift: -2	Delete	to higher and	
		Type: AP contificate w Shift: 1	Delece	lower m/z	
		Element:	Delete		
		Type: AB certificate Y Shift: 1			
		Element:	Delete		
		Type: AB certificate V Shift: 2			
		Element:	Delete Add correction		
	Save changes	Cancel			
	Help Window		×		
				✓	
and the second s	ne			S Local Intranet	
Г :	Quantitation	© 2007-2023 Matrix Science	e		MATRI SCIENO

A third type of isotope correction is used in reporter ion technologies like iTRAQ and TMT, where the correction factors are obtained experimentally, by analysing the isolated reagents. This combines both upward and downward corrections for labels which have complex, multi-isotope compositions.

Following on from corrections, let's have a look at reporter ion quantitation. Everything happens on the search engine as the peak list contains all the information required for the quantitation.

Open the search form. We choose an appropriate quantitation method. We don't need to specify the iTRAQ modifications as variable mods because these are pre-defined in the quantitation method. Submit the search...

← → C
Disay: Report puppeder ratios: © PSensitivity and FDR (reversed protein sequences.)
Specificity Second Database Linescone (1.40/3.1) Complement C+4:0.0FHmms segment C
State Description Description Description Proteins (543) Readed Builder Instandand L10031 Instandand L1003
Protein families 1 - 10 (out of \$21) 10 per page 1 2 2 0 (out of \$21) 12 2::CO48_HIMAN 2 2::CO48_HIMAN 1
Image: Section of the sectio
Constant Constant Constant Constant Constant 1 2
1 1 2::::::::::::::::::::::::::::::::::::
2 2
<pre></pre>
Threahold (0): 0 Cut Score Nass Natches Sequences emPAI 114/113 115/113 116/113 116/113 116/113 116/113 116/113 112/113 11.1 22::Coll_HAMA 104342 21200 3818 (3818) 103 (103) 48.75 1.032 1.045 1.015 1.015 1.015 1.016 1.125 1.051 1.002 Complement C44 00-Hamas supers On-9606 0hv-C44 PE IL 22::Coll_HAMA 108342 21200 3818 (3818) 103 (103) 48.75 1.032 1.045 1.016 1.125 1.060 Complement C44 00-Hamas supers On-9606 0hv-C44 PE IL 22::Coll_HAMA 108342 21700 3814 (3814) 102 (102) 44.37 1.038 1.073 1.045 1.060 Complement C44 00-Hamas supers On-9606 0hv-C44 PE IL 20::Coll_HAMA 108342 21700 3814 (3814) 102 (102) 4.37 1.038 1.073 1.045 1.061 1.029 I.080 1.080 1.080 1.080 1.080 1.080 1.080 1.080 1.080 1.080 1.080 1.080 1.080 1.080 1.080 1.080 1.080
Tweshold (0): 0 CCC Store Mass Natches Sequences emPAI 114/113 115/113 116/113 117/113 117/113 11
Control Control National Sequences emPAN 114/113 115/113 116/113 11
Score Mass Mass Sequences emplain 114/113 1115/113 116/113 112/113
B L1 L1 <thl1< th=""> <thl1< th=""> <thl1< th=""> L1</thl1<></thl1<></thl1<>
Likewity: All loca Date: Depart
→3926 public matche (162 num-duplicate, 3543 deplicate) →3926 public matche (162 num-duplicate, 3543 deplicate) →3926 public matche (162 num-duplicate, 3543 deplicate) Oursy Public Bittor it to window Distry Public matche (162 num-duplicate, 3543 deplicate) Status it to window Bittor it to window distry Public matche (162 num-duplicate, 3543 deplicate) Pittor it to window distry Public matche (162 num-duplicate, 3543 deplicate) Pittor it to window distry Public matche (162 num-duplicate, 3543 deplicate) Pittor it to window Pittor it to window distry Public matche (162 num-duplicate, 354 deplicate) Pittor it to window Pittor it to window Pittor it to window distry Public matche (162 num-duplicate) Pittor it to window distry Public matche (162 num-duplicate) Pittor it to window distry Public matche (162 num-duplicate) Pittor it to window distry Public matche (162 num duplicate) Pittor it to window Pittor it to window <t< td=""></t<>
Profile matches (28 anor-dupliced, 336 departed) Dia Allo: Ris under-dupliced, 336 departed) Mr (capt) Mr (star) Ppr H Sone Expect Raw 0 114/113 115/113 <
Observed Ifrequelt Ifrequelt <th< td=""></th<>
df2111 513.3046 1002.3948 100.2 2 0.058 1.135 0.948 1.988 1.982 0.988 <th0.988< th=""> 0.988 0.988</th0.988<>
dists2 bit 533.2921 1044.494 544.0 3.00 1.000 bit 1.024 1.044 1.046 <
distr 533.7829 1055.532 1056.533 -0.7 0 0.734
df0300 bs 568.3166 1094.422 1044.323 -1.08 0 0.97 1.175 0.972 0.175 0.172 <
df1990 b4 598.2969 1194.179 119
df1950 419.4211 1254.735 1255.755 1
effiliate fe column column <thcolumn< th=""> column colum column</thcolumn<>
eff133 12 e33.5749 1267.702 1267.702 11.8 0.30 0.701 0.701 0.483 0.485 0.483
dfild1) 24 23.5.3070 21266.3978 0.40 2.4 0.023 1 1.000 1.039 1.356 1.356 1.125 1.218 E.E.RACTER.V dfild1) 24 23.723 2166.003 1261.000 1261.398 1.351 0.468 1.347 1.348 1.360 0.169 E.ERACTER.V dfild1) 2216.001 1261.000
missi rg4 cs.are cse.are cse.are <thcd.are< th=""> <th< td=""></th<></thcd.are<>
dtstrip curve
District 441/2420 Lafter for stage -Lafter as vumme 1 0.000 Lafter 0.2485 0.000 0.999 -0.002 0.310 K.VMBQBR.V d12414 460.3486 1276.4706 1276.4706 1270 0.581 -0.042 0.391 K.VMBQBR.V
DEGUDU F1 420-7072 1203-0770 1203-0770 1203-0700 11 0.00 F1 0.000 F1 0.000 F1 0.001 0.001 0.001 0.000 ■ K-641/F1RH.5 + Detation (0)

And we have a search report! This example is 8plex iTRAQ. In the Proteins tab, you can toggle display of the ratios for proteins and for individual peptides. For the protein ratios, a tooltip shows the peptide ratio count, the geometric standard deviation, and the p-value for the ratio being different from 1.

Which ratios are displayed and how they are named is specified in the quantitation method. You could edit the method to report different pairs, e.g. 115/114 and 117/116, or something more complex, like ratios to the sum of all four channels. Note that you can't do this if you are using our public web site, because this is a shared resource, so you don't have access to the configuration editor.

← → C	ter_results_2.pl?file=%2Fdata ^c ed (133163)	%2FF981131.dat;_	min_precurso	r_charge=1;_	quant_min_	num_peptides=2;_quant_norm_method	☆ 🏭 =
Protein hits (567 proteins)							
▼Columns: Standard (12 out of 58)							-
Arrangement: <custom> Load</custom>	Make default						
Member Database Accession Score Mass Num of significant sequences Num of significant sequences en of significant sequences en of significant sequences bescription	Num of unique sequences Num of significant unique se Sequence coverage pl 114/113 Number of peptides (114/113) (p-value Norormal (114/113) p-value (114/113) p-value (115/113) 115/113 Number of peptides (115/113) Significant (115/113) Significant (115/113) Significant (115/113)	equences 3) ie < 0.05) 3) ie < 0.05)					
		Apply					
Filters: (none)							
Export as CSV							
Family M DB Accession	Score Ma	ass Matches	Match(sig)	Sequences	Seq(sig)	emPAI Description	
1 1 SwissProt d2::C04B_HUMAN 2 SwissProt d2::C04A_HUMAN 2 1 SwissProt d2::APOB_HUMAN 3 1 SwissProt d2::CERU_HUMAN 4 1 SwissProt d2::CERU_HUMAN	164368 2 163881 2 127493 6 59582 1 58871	217600 4160 217680 4159 524988 4794 143199 1623 58330 1557 58934 2540	3852 3846 3987 1472 1532 1927	108 108 239 57 20 33	104 103 218 50 19 30	52.06 Complement C4-B 05=Homo sa 47.60 Complement C4-A 05=Homo sa 10.03 Apolipoprotein B-100 05=Homo 15.50 Ceruloplasmin 05=Homo sapien 11.90 Alpha-1B-glycoprotein 05=Homo 156.06 Hemopexin 05=Homo sapiens 0	piens GN= piens GN= sapiens GI is GN=CP P o sapiens C GN=HPX PE

We go to the report builder tab to configure a tabular report covering all the proteins of interest. You can select and re-order the columns, apply filters, and sort the rows.

Proteins (542)	Downey Duildon	Unreal	inned (10016	(2)		E. normalisk	
	Etamine Latter vepore bounder unassigned Lissios]						
Protein hits	(555 proteins))					
Columns (8 ou	ut of 58)						
Filters: Databa	Filters: Database is SwissProt						
Export as CSV							
Eamily M Aco	cession	Mass	114/113	N	SD(geo)	Description	
465 1 d'2:	::MCPH1_HUMAN	116525	3.595	2	1.930	Microcephalin OS=Homo sapiens GN=MCPH1 PE=1 SV=3	
210 1 22:	::CRP_HUMAN	29724	2.900	6	1.251	C-reactive protein OS=Homo sapiens GN=CRP PE=1 SV=1	
<u>479</u> 1 e ¹ 2:	::HAUS7_HUMAN	47480	1.752	2	1.135	HAUS augmin-like complex subunit 7 OS=Homo sapiens GN=HAUS7 PE=1 SV=3	
<u>326</u> 1 d'2:	::MED30_HUMAN	23444	1.734	5	1.138	Mediator of RNA polymerase II transcription subunit 30 OS=Homo sapiens GN=MED30 PE=1 SV=1	
<u>107</u> 1 d'2:	::HBB_HUMAN	19731	1.721	33	1.209	Hemoglobin subunit beta OS=Homo sapiens GN=HBB PE=1 SV=2	
<u>173</u> 1 22:	::HBA_HUMAN	18944	1.694	18	1.234	Hemoglobin subunit alpha OS=Homo sapiens GN=HBA1 PE=1 SV=2	
<u>504</u> 1 m ²	::SNTG2_HUMAN	0	1.634	2	1.983		
<u>323</u> 1 m22	CIXNUS_HUMAN	56364	1.500	2	1.0/1	Inforedoxin domain-containing protein 5 US=Homo sapiens GN=TXNDC5 PE=1 SV=2	
270 1 22	-PAT1 HUMAN	51161	1 401	25	1.245	Plasminogen activator inhibitor 1 OS=Homo saniens GN=SERDINE1 DE=1 SV=1	
162 2 22	DEST HUMAN	25554	1.457	2	2 412	Destrin OS=Homo saniens GN=DSTN PE=1 SV=3	
358 1 122	CA2D1 HUMAN	145791	1,451	2	1,491	Voltage-dependent calcium channel subunit alpha-2/delta-1 OS=Homo sapiens GN=CACNA2D1 PE=1 SV=3	
234 1 22:	::GGH_HUMAN	43564	1.408	3	1.332	Gamma-glutamyl hydrolase OS=Homo sapiens GN=GGH PE=1 SV=2	
161 1 m ² 2	::NGAL_HUMAN	27883	1.383	3	1.027	Neutrophil gelatinase-associated lipocalin OS=Homo sapiens GN=LCN2 PE=1 SV=2	
207 1 22:	::COTL1_HUMAN	20286	1.381	2	1.047	Coactosin-like protein OS=Homo sapiens GN=COTL1 PE=1 SV=3	
<u>302</u> 1 m ² 2	::HPSE_HUMAN	73508	1.377	2	1.345	Heparanase OS=Homo sapiens GN=HPSE PE=1 SV=2	
286 1 d'2:	::HEM2_HUMAN	40594	1.355	2	2.183	Delta-aminolevulinic acid dehydratase OS=Homo sapiens GN=ALAD PE=1 SV=1	
<u>88</u> 1 m ² 2	::S10A9_HUMAN	16930	1.351	27	1.183	Protein S100-A9 OS=Homo sapiens GN=S100A9 PE=1 SV=1	
2 <u>91</u> 1 m ² 2	::RSLAA_HUMAN	0	1.350	5	1.136		
510 1 m ² 2	::VPS53_HUMAN	96673	1.334	2	1.224	Vacuolar protein sorting-associated protein 53 homolog OS=Homo sapiens GN=VPS53 PE=1 SV=1	
204 1 d2	COTR HUMAN	62550	1.324	3	1.081	Lataiase US=Homo sapiens GN=LAT PE=1 SV=3	
338 1 22	BURB HUMAN	25230	1.314	3	1.306	Flavin reductase (NADPH) OS=Homo saniens GN=BLVRB DE=1 SV=2	
193 1 22	CAMP HUMAN	24340	1.309	9	1.125	Cathelicidin antimicrobial peptide OS=Homo sapiens GN=DEVNO FE=1 SV=3	
271 1 22	GSHR HUMAN	67328	1.287	2	1.110	Glutathione reductase, mitochondrial OS=Homo sapiens GN=GSR PE=1 SV=2	
395 1 122	::TALDO_HUMAN	47085	1.286	2	1.116	Transaldolase OS=Homo sapiens GN=TALDO1 PE=1 SV=2	
194 1 22:	::LCAT_HUMAN	53777	1.256	4	1.159	Phosphatidylcholine-sterol acyltransferase OS=Homo sapiens GN=LCAT PE=1 SV=1	
128 1 m ² 2	::CAH1_HUMAN	34678	1.255	13	1.405	Carbonic anhydrase 1 OS=Homo sapiens GN=CA1 PE=1 SV=2	
266 1 22.	неротие шнили. П	46566	1 947	A	1 1 1 74	IDDLCIeNAcibetaCal bata-1 2-M-acetulalucecaminultraneferace 9 OC-Home canione CN-B2CNT9 BE-1 CV-1	

As an example, maybe we want to list proteins with the largest fold change for 114/113 after excluding contaminants. The table has been sorted on descending 114/113.

	E PROMI-TABle Mercie X + - O X
•	
$\leftarrow \rightarrow$	C 🙆 🖄 O D localhost/mascot/gy/master_results_2.2/l7lie=_%2/fata%2F20220625%2FF ☆ 🕹 👹 🖄 ≫ ≡
Display	/ Report peptide ratios 🗹 Report protein ratios 💟
Sensitiv	ity and FDR (reversed arotein sequences)
Proteins	¢ (3459) Report Builder Unassigned (21312) S.Cermalink
Protein	families 1–10 (out of 3396)
10 v p	er page 1 2 2 4 5 6 240 Next Expand all Collapse all
Accession	v Contains v Find Clear
v 1	1 31:PP00358 1720 dtyremidehyde 3-phosphate dehydrogenae 2 01=Sanhar. 2 31:PP00360 1703 dtyremidehyde 3-phosphate dehydrogenae 1 05=Sanhar.
,	즉 로 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
☑ 1.1	☆3::P00358 1720 44288 31 (31) 8 (8) 1.15 4.584 8.967 1.850 2.882 9.014
I.2 Redispla	#3::P00360 1703 44800 29 (29) 8 (6) 1.13 5.014 9.310 1.881 1.438 5.709 m/ Mi Noon
▼36 pep	tide matches (12 non-duplicate, 24 duplicate) - Et to window
a M So	Dre Expect Rank U 5 to 1 10 to 1 10 to 5 127/126 128/126 129/126 130/126 131/126 132/126 1 2 1
64 0	29 0.012 1 3.883 5.259 1.354 1.214 2.118 3.100 3.282 2.594 0.000 0.697
91 0 34 0	33 0.0034 1 0 4.761 0.4674 1.766 6.915 33.787 56.992 56.018 29.930 6.191 1.411 ■ 1 41 0.0019 1 0 5.050 11.220 2.003 *** *** *** *** *** *** *** *** ***
178 0	41 0.00095 1 U 3.185 5.528 1.730 9.425 24.792 33.294 29.885 11.769 2.017 1.167 1
-68 0 61 1	47 6.18-05 11 0 5.708 10.012 1.754 1887 888 888 888 888 888 888 888 888 88
MASCOT : Qua	Intitation © 2007-2023 Matrix Science MATRIX SCIENCE

The other widely used reporter chemistry is TMT from Thermo Scentific. In this sample the E. coli proteome has been spiked at lower concentration values at ratios of 5 to 1 and 10 to 1 in a background of the human proteome.

Under certain conditions, TMTpro labeling can generate strong complementary ions. These are the remnants of the labeled peptides after incomplete MS/MS fragmentation, resulting in the loss of the reporter ion and carbon monoxide. The complementary ion consists of the peptide and the balance region of the label.

In this spectrum you can see the expanded doubly charged complementary ion region. If you are observing complementary ions for some spectra, you can remove them with a supplementary script which results in a slight improvement in the peptide scores.

Alternatively, you can tune the fragmentation conditions to promote complementary ions and use them for quantitation. The main reason to use complementary ions for quantitation is that there can be interference in the standard reporter ion region from co-isolating peptides that then fragment along with the target peptide and distort the reporter ion measurements. The complementary ions relate directly to the precursor mass of the peptide so we lessen the interference from other peptides.

The script is run by Mascot Daemon after peak picking but before searching to either remove or move the complementary ions and replace the original reporter ions.

In this example we are replacing the reporter ions with the complementary ions. The complementary ions are removed from the spectra along with the original reporter ions. New reporter ions are calculated from the complementary ions and inserted back into the peak list. Mascot Server then uses the new reporter ions for quantitation.

There are full instructions on using or removing the complementary ions plus a link to the script in the Mascot Server help pages, quantitation section, reporter ions.

For the reporter protocol, i.e. iTRAQ or TMT, you have to be very careful with peak detection. Reporter ions do not have natural isotope distributions, so anything that assumes this will not be reliable.

MS Processing MS/MS Processing Time Domain MS Peak Picking Filtering General General Correlation Threshold (Bho) 0.6 Minimum signal to noise (S/N) 1	x + Ο □ loahest/inscat/c-gi/m-carify.sel/u=1665178191 128. Δ
Correlation Threshold (Rho) 0.6 Same as MS Peak Picking € → C @ Edit Qua Minimum signal to noise (S/N) 1 Apply baseline correction Edit Qua	O D locathost/mascut/x-ogi/ms-config.exe?u=1665178191 132% ☆
Minimum signal to noise (S/N)	
Name	antitation Method:TMTpro 18plex Richard Jacob
Minimum peak m/z 50 rr method isotope Ustribution * Maximum peak m/z 100000 Maximum peak iterations per scan 500 Method	pro 18plex Description Proteome Sciences 18-plex Tandem Mass Tags pro(R) Protect Component Report Ratio Integration Quality Outlers Normalisation XML
Peak Profile Reporter Ion Region Property	Value Action
Minimum peak width (Da) 0.1 V Pick single peaks in this range	reporter v
Expected peak width (Da) 0.2 Minimum peak m/z 112.5 Reporter Tok	lerance Unit ppm v Clear
Maximum neak width (Da) 0.4 Maximum neak m/z 130.5	
Maximum peak width (Da) 0.4 Maximum peak m/z 130.5 Save change	es Cancel

If you are using Mascot Distiller for the peak picking you can set the MS/MS Peak Picking parameters to treat the reporter ion region as single peaks with no deisotoping.

The TMTpro labels make use of the mass defect between 13C and 15N. This does not normally affect the peak picking, but we do need to use a narrower tolerance window in the reporter ion region in order to separate the peaks. This is specified in the quantitation method.

Whatever peak picking software you use, you'll probably need to experiment with the settings.

Normalisati Format Deeplay When • Ar • St • Is	ion Significance threshold p< 0.05 Max. number of families unique sequences with number of sig. unique sequences with number of sig. unique sequences with number of sig. unique sequences with number of all peptides assigned to accession(s) with repetides with at least homology with sequence(s) with resolution with the sequence of peptides assigned to accession(s) with resolution with the sequence of peptides assigned to accession(s) with resolution with the sequence of peptides assigned to accession(s) with resolution the sequence of peptides assigned to accession(s) with the sequence of t
• Is	olating a sub-set of proteins by affinity methods - NO
• Lo	ooking at a synthetic dilution series - NO
MASCOT : Quar	ntitation © 2007-2023 Matrix Science

Whether to calculate protein ratios from the average, median or weighted average of the set of peptide ratios is best decided by running some standards (e.g. a cell lysate spiked with varying amounts of a known protein) and seeing which gives the best accuracy and precision.

Normalisation is a way to reduce or eliminate systematic errors. In Mascot you can normalize to one or more proteins or one or more peptide sequences. Normally, these will have been spiked into the sample for this purpose. You can also perform global normalization by forcing the average or median ratio for all peptides to 1. If the average or median ratio is supposed to be 1, this is the smart thing to do. In other cases, it is the wrong thing to do. For example, if you are analysing a dilution series, where the ratio is supposed to be 3:1, you wouldn't want to force it to be 1:1.

Please see the other quantitation presentations to learn about reporter ions, SILAC and label free quantitation as well as reporting formats for the results.

- K1. Quantitation Introduction.
- K2. Quantitation MS2 based methods. Quantitation methods that only require information available in the MS/MS peak list are supported in Mascot Server.
- K3. Quantitation MS1 based methods. Methods that require additional information from the raw data file require Mascot Distiller + Quantitation Toolbox.
- K4. Quantitation Reporting.