Author: Patrick Emery, Matrix Science Ltd
Version: 2024-03-13

Creating a custom Distiller report

Reports in Mascot Distiller 2.8 and later are generated using Python scripts and our Mascot Parser
API. A report consists of two separate files:

1. The main report Python file
2. An XML file which defines the report inputs, and any GUI wizard pages required to take input
options from the user.

In this tutorial, we'll take a look at how to create your own custom reports for Mascot Distiller. In
order to write your own reports, you should have a good working knowledge of the Python
programming language, and also be familiar with our Mascot Parser library, used to access the search
and quantitation results (https://www.matrixscience.com/msparser.html).

Setting up your development environment

Mascot Distiller ships with an embedded version of Python 3.6 and a number of useful libraries
including Mascot Parser, pandas, Matplotlib and others. In order to develop your own reports, you
want to use a matching environment. If you’re running development on the same PC as Distiller is
installed on, you can do this by simply pointing your development environment to use the Python
installed by Distiller (C:\Program Files\Matrix Science\Mascot Distiller\python-3.6.5-embed-win-
amd64 by default). For example, in Microsoft’s free Visual Studio Code:

Click on the Python version number in the bottom right of the editor

LF {& Pythoh 3.6.564-bit) [}

This will open a ‘dialog’ in the top middle of the editor pane. Click on “Enter interpreter path...”:

Select Interpreter

—+ Create Virtual Environment...
3 Enter interpreter path...
Python 3.6.5 64-bit c:\Program Files\Matrix Science\Mascot Distiller\python-3.6.5-emb... Recommended

This will change the interface — now click on “Find”:

And browse to the Python executable located in “C:\Program Files\Matrix Science\Mascot
Distiller\python-3.6.5-embed-win-amd64”:

’G Select Python interpreter X
< S « Masc.. » python-3.6.5-embed-win-amd... > 4 & Search python-3.6.5-embed-..
Organize - New folder = # o

. Name Date modified Type
v M This PC
= DLLs 31/10/2023 22:36 File folder
> = Desktop
Lib File folder

b Documents

File folder

tel
> 8 Downloads

P python 01/02/2019 11:00 Application
> [Music

@ pythonw 01/02/2019 11:00 Application
> [Pictures
> [Videos

> e Local Disk (C)
|

e s b il FOA

File name: python ~ | Executables

Select Interpreter Cancel

If you’re developing the report on a different PC, you can install Mascot Distiller for free on your
development PC. This will install Distiller in viewer mode, which includes the embedded Python and
is sufficient for developing and testing your own Python reports.

Example report — Top 3 Intensity

As an example of how to create a custom report for Mascot Distiller, we’ll work through creating a
new report which calculates the Average (top-3) protein intensity for all sample components and
generates a CSV export file.

XML configuration file

As mentioned above, a Distiller report requires two separate files — the Python source file which runs
and generates the report, and an XML file which defines the report inputs and outputs, the
supported quantitation protocols and the output file type. The report file can be called anything of
your choosing, although the filename should end with the extension “.py”. The XML file must match
the name of your Python report file, with “xml” appended to the end. So we’ll call our top-3
intensity report files:

e top-3.py
e top-3.py.xml

We’'ll start by defining the XML file. This should implement the “distiller_report_definition_1.xsd”
XML schema, which is shipped with Mascot Distiller. You'll find a copy of it in the Mascot Distiller
installation directory. The XML file defines which quantitation protocols the report supports, so that
Mascot Distiller will disable it if you don’t have search results of the correct type, and where in the
menu the report will appear in Distiller, as well as any inputs the report requires.

DistillerReport is the root element. The “title” attribute should be set to give the name of the report,
and the grouping attribute the “path” to the report in the GUI. In our example, these are set to “Top
3 protein intensity” and “Custom” respectively:

majorVersion="1" minorVersion="0" title="Top 3 protein

intensity" grouping="Custom"

Our report would be accessible in the Distiller GUI under Analysis->Reports->Custom->Top 3 protein
intensity. The grouping attribute can describe a more complex path — for example Custom/Intensity.

The Supports element has a series of attributes which can be set to true or false to define which
quantitation protocols (https://www.matrixscience.com/help/quant_overview_help.html) the report
supports. In this case, we’ll write the report to use data from any of the quantitation protocols
supported by Mascot:

average="true" precursor="true" replicate="true" reporter="true"

multiplex="true"

The next section of the XML file defines the report inputs. There are two sections to this. The
“ReportConfiguration” element defines fixed input values which are passed through to the report
and also available to Distiller. For our example, we want to tell Mascot Distiller that the report will
generate a CSV file:

name="exportFormat" label="Format" value="CSV" type="text"

mapsTo="ExportFileType"

This maps to a standard report variable — “ExportFileType”.

We also want to define a variable that can be used later on in the XML to decide whether or not to
show a Wizard page to the user to select a contaminants database for exclusion from the report:

name="databaseCount" label="no databases" type="integer"

value="@{DatabaseNames.Count}"

The @{DatabaseNames.Count} value tells Distiller to substitute in the number of databases, while
the type tells it that this is an integer value.

The “Wizard” element defines any GUI Wizard which should be displayed to the user running the
report in order to set any required values. After opening the Wizard element, you need to define a
“WelcomeText” element — this creates an opening page for the Wizard describing the report. After
this we add one or more “Page” elements, which should define inputs for the user to make. Finally,
we end with a “CompletionText” element, defining a final page to display before the user runs the
report.

For example, the XML below adds a Page which defines a drop-down list from which the user can
choose the peptide selection criteria for the Average top-3 protein component intensity calculation:

title="Peptide selection criteria"

The selection type determines whether the n peptides
must have different sequences (unique_sequence) or whether to accept different
modification states of same sequence (unique _mr), or even to accept peptides
with same sequence and modifications in different charge states
(unique_mz)

name="selectionType" label="Selection type"

type="select"

value="unique_sequence" displayString="Unique

sequence" selected="true'

value="unique_mr" displayString="Unique Mr"

value="unique_mz" displayString="Unique M/Z"

Python report file
The Python environment supplied with Mascot Distiller includes a number of useful libraries, such as

our Mascot Parser library for parsing Mascot search and quantitation results and a number of third
party libraries including pandas. Additionally, we ship a number of helper libraries which simplify
extracting the required result values, which we’ll use to simplify the initial loading of the search and

guantitation results.

At the head of the Python script, we’ll import the libraries we want to use:

Sys
CreateQuantDataFrames
pandas

msparser
io

WriteReports
LoadQuantitation

msparser in the library name for Mascot Parser. CreateQuantDataFrames, WriteReports and
LoadQuantitation are all helper libraries that we’ll be using to load the data into pandas dataframes,
and to format the final report. These transform the results into pandas (https://pandas.pydata.org/)
data structures. You can find these in the “reports” directory in the Distiller Python installation.
Additionally, we’ll be using msparser to access the results.

sys and io are standard Python libraries.

In the body of the script, the first thing we want to do is initialise a global msparser logging object.
This will output anything we choose to log to the standard output of the script — Distiller will capture
this and include it in its own log file (provided the required log level is set). You can find more
information on logging in the Mascot Parser APl documentation.

mylogger = msparser.ms_stdout logger()

Now we’ll start the actual main method of the report. The report script itself is heavily commented
to explain what the various steps and calls are doing, so we won’t run through every line here. If you
have any questions regarding the script, please contact Matrix Science support.

Mascot Distiller passes the report settings out to the Python script as a CSV file. If you want to take a
look at the contents of the file being passed to a report, you can do so by setting the Distiller debug
levels. Under Tools->Log->Preferences, include “Debug 1”, and the contents of the CSV file will be
added to the Distiller log file when you run a report. To simplify parsing the CSV file to extract the
required settings, we’ll load the CSV into a PANDAS dataframe:

propsPath sys.argv[1]

props_csv = pandas.read_csv(propsPath, delimiter = ',°',
keep default na = , quotechar="\"")

And then make subsets of the settings to more easily access the values — for example, we’ll get the
“selectionType” value we defined in the .xml file and which the user has set in the Wizard and set it
to a variable called

props_logging = props_csv[props_csv.Identifier == ‘LoggingOptions’]

props_summary props_csv[props _csv.Identifier == ‘SummaryInputs’]
props_selectionType = props_csv[props_csv.Identifier == ‘selectionType’]
peptideSelectionType = props_selectionType.Inputl.iloc[@]
excludeDatabase = float(props_analysis.Input5.values[@0]) if

props_analysis.Input5.values[@] != “° else ¢’

savePath = props _options.Input2.iloc[9]

The next part of the method calls a helper method in LoadQuantitation to load our search and
guantitation results using the relevant settings we’ve just loaded in from the csv properties file:

loadRes = LoadQuantitation.DolLoad(propsPath)

This returns an array which we’re setting to a variable called loadRes, which we’ll pass to a new
method in our script, along with the other required settings, which will generate the actual report:

CreateTop3Report(loadRes, excludeDatabase, peptideSelectionType, savePath,
props_header, props rawfiles, exportHeader)
We've documented the input parameters for the function in the script — notice that we’re passing
through our loaded results array, details of any contaminants database, the peptide selection type
selected by the user etc.

CreateTop3Report(loadedResults, excludeDatabase, peptideSelectionType,
savePath, props header, props rawfiles, exportHeader):

if (len(loadedResults) == 0):
sys.exit("No Results Parameters Supplied")

The first step in the method is to sanity check that we have loaded search and quantitation results —
if not, exit the script with an error message.

Next, we need to access the search and quantitation results and determine which quantitation
protocol was used (reporter, precursor, label free, average etc), as the way we need to access the
actual peptide component intensity values will depend on this — for example, to check if we have

“Average (top-3)” label free quantitation results, check if the quantitation method protocol has the
Average method set:

isMS1 = loadedResults[@].isMS1
quant = loadedResults[@].q0Obj

pepSum = loadedResults[0].pepSum
gMethod = loadedResults[@].gMethod

isAverage =
if isMS1:
isAverage = gMethod.getProtocol().getAverage() !=

Then we need to get the individual component (sample) names from the quantitation method:

componentNames
if isAverage:
componentNames.append('Avg")
else:
for ¢ in range(@,gMethod.getNumberOfComponents()):
component = gMethod.getComponentByNumber(c).getName()
componentNames . append(component)

We’'ll be calculating the top-3 intensity protein intensity values for each component/sample
individually. We’ll need to get our protein hits from msparser for this, using one of our supplied
helper methods to pull all the anchor proteins into an array, which we’ll call proteins:

proteins = CreateQuantDataFrames.pullProteinsFrom(pepSum)

Now we can loop through each protein and calculate the sample intensity values:

end = len(proteins)

data = []

for i in range(@, end):

WriteReports.OutputProgress('Calculating protein intensity values',
(i+1), end)

WriteReports.OutputProgress allows us to pass progress information back to Mascot Distiller for
display to the user. The text will be displayed in the progress bar, while (i+1) and end are out current
position in the loop and the final point respectively — these will be converted to a percentage
completed.

Now, we access the current protein at the index i in our proteins array and set up a new row for the
report table, skipping any protein that comes from the user specified contaminants database (if any):

row = []
protein = proteins[i]

if protein.getDB() == excludeDatabase:
continue

We'll start our output row with the protein hit number and accession:

hitNo = protein.getHitNumber()
if protein.getMemberNumber() > 0:
row.append("{}.{}".format(hitNo, protein.getMemberNumber()))
else:
row.append(hitNo)

row.append(protein.getAccession())
Now we can calculate the protein intensity for each component. We loop through the

componentNames array we defined earlier, and call another procedure defined later in the script —

calculateProteinintensity — passing in the ms_protein instance along with the ms_peptidesummary,
guantitation results, component name, method details and the user defined peptide selection
criteria.

This returns the calculated average intensity for the protein sample, and we’ll add it to the row:

for name in enumerate(componentNames):
intensity = calculateProteinIntensity(protein, pepSum, quant,
name, isAverage, isMS1, peptideSelectionType)

if intensity > ©:
row.append(intensity)
else:
row.append(‘’)

calculateProteinintensity is fully documented in the script source code, so you can see there how the
average intensity values are calculated. We'll end the protein row with the description taken from
the FASTA entry, and then append the row into our data array:

row.append(pepSum.getProteinDescription(protein.getAccession()))

data.append(row)

This procedure is repeated for each protein hit in the results. Once that is completed, we need to
put together the column header information:

header = []
header.append(‘’)
header.append(‘Accession”’)
for name in componentNames:
header.append(“ »” . format(name,’intensity’))
header.append(‘Description”’)

We can then convert our data array containing all the protein intensity information into a pandas
data frame with our header:

pandas.DataFrame(data, , header)

The advantage of doing this is that the pandas library has methods which will allow us to easily
export the data into a CSV file without having to write any of our own export code, simply by calling
the to_csv method of the data frame:

if exportHeader == 'True':

df.to csv(savePath, ',

Our report script is now ready. Copy the .xml and .py files to “C:\ProgramData\Matrix
Science\Mascot Distiller\reports” directory on the workstation with your Mascot Distiller
information. Restart Mascot Distiller and you’ll see your custom report appearing in the Mascot
Distiller in the path defined in the XML file

Tools Windows Help

J Mascot Search L iR
I Cenovo Search * beetyl 4]
n 3 Digest Protein.. , |Score | Mass | M/L |SD(geo) |# | H/L |
£& | Fragment Peptide... - T | A . & < _]
n . | 638 22765 09572 10831 5| D@32 |
5 Pl Wily 515 22324 09637 10667 3| 0.8008 |
. |
Calculate XIC... “ 337 22049 08419 11146 50880 |
m g Cuantitate.. | 68| 24157 -I
n _ L 444 23355 09426 1.0166 3 08733
Celete Quantitation Results _ .
" s 3 oams
! ﬂapulu ! ANOVA 10320 2 _I
. Export guantitation results * AMOVA plus clustering | _I
Tl e
'z 451 7 gil13159 Average 11211 3 _I
8 gi34147513 Box plot 10317 3| 0872
n/z 432 101 gil4758958 o ol 10279 2| 0825 |
Tz -;;_; 102 gi16756368 Hierarchical clustering 10462 2 -I
ni 103 gil4506365 K-means clustering 1464 2 |
iz 427 11 gil558528 PCA 10134 2| 08344
n/z 478 12 gi[147904567 Bepfides 10233 2| 09394
n/z 481 130 gil5453740) 10560 4| 08387 |
_ Proteins _
132 gil29568111 _ 19697 3| 10030 |
“j = j;i 141 il450A587 Ehizlity Ll
Z Ll ; .
n/z 515 Table-matches
[Triple Encoding SILAC sa Table-peptides |
n/z 457 : :
Table-peptides-int
n/z410 FEE T T
n/z 459 Table-proteins
Vaoleano plot
n/z 426 182 [— " S
"z 476 | - Custom ; Top 3 protein intensity
n/z 567 1814 '

Note: Once the script is registered, you can update the .py or .xml files without restarting Mascot
Distiller. The only change that won’t be reflected without restarting Distiller are any changes made to
the “grouping” element of the XML file.

If we now click to run the report, Mascot Distiller will generate the report wizard automatically from
the XML, allowing the user to run the report:

Welcome

This report generates a CSV file containing protein component intensity values calculated

using the top-3 method

Mext » | | Cancel

When completed, the generated CSV file will open automatically in the software registered on your
system to handle CSV files — in our case, Excel:

g & Calibri -

Paste B I U. v Mo

Clipboard T3 Fant
Al g fe

A A B c

1 Eﬂccessian light intensity
2 1 gi|4507357 2324.671919
3 2 gl| 118090 2095223651
4 3.1 gi|4505591 5004288953
5 3.2 gi|32189392 2361.177715
6 3.3 gi| 149243259
i 4.1 gi| 2554831 1015110875
8 4.2 gi|2204207 1015.110875
9 | 5 gi|48255905 133.3505781
10 6 gi|31874085 257.2522597
11 7 gi[913159 513.582957
12 8 gi|34147513 406.6940136
13 9 gi|5031635
14 10.1 gi|4758988
15 10.2 gi| 16758368
16 10.3 gi|4506365
17 11 gi|558528
18 12 gi| 147904567
19 13.1 gi[5453740 741.4507353
20 13.2 gi|29568111 4850204088
21 14 gl |4506587
22 15.1 gi| 1065361
23 15.2 gi|4502205

pydirhfg.cnn *
feady {4 Accessibility: Unavailable

Ml

3]

Bl =
£

Alignment i

Z-A p I' a
7" Del I ZY
lete ~ FIEs
Sort & Find & Add-ins
% Fittar~ Select ~
Edditing |

Iﬁ.zneml F. conditional Formatting v & Insert
Lc2 IR A] * Format as Table »
(| - o

) = Cell Styles ~ *| Format ~

m Stytes

Cells Add-ing

E E G H I J K L M M

heavy intensity medium intensity Description

2025.151656
1892.654947
4731.154737
2036.325587

861.3731026
861.3731026
163.5656703
224.9091947
395.2042487
327.0844824

7085929344
565.1542585

2232.728534 transgelin 2 [Homo sapiens]

v

2034.31191 Peptidyl-prolyl cis-trans isomerase B precursor (PPlase) (Rotamase) (Cyclophilin B) (S-cyclophilin} {SCYLP) {C*

5007.937897 peroxiredoxin 1 [Homo sapiens]
2193.323708 peroxiredoxin 2 isoform a [Homo sapiens]
Chain A, Crystal Structure Of Human Peroxiredoxin 4 (Thioredoxin Peroxidase)

912.3644046 Chain A, Crystal Structure Of Human Glutathione 5-Transferase P1- 1[v104] Complexed With (9r,10r)-9-{5-GI

912.3644046 glutathione S-transferase [Homo sapiens]
137.6764743 transgelin [Homo sapiens]
379.4488278 hypothetical protein [Homo sapiens]
428.0002808 neuropolypeptide h3 [human, brain, Peptide, 186 aa]
356.4975537 RAB7, member RAS oncogene family [Homo sapiens]
cofilin 1 (non-muscle) [Homo sapiens]
RAB1A, member RAS oncogene family [Homo sapiens]
RAB14, member RAS oncogene family [Rattus norvegicus]
RAB2A, member RAS oncogene family [Homo sapiens]
proteasome subunit Y [Homa sapiens]
hypothetical protein LOC389435 [Homo sapiens]
735.3927132 myosin regulatory light chain MACL3 [Homo sapiens]
687.4399737 myosin regulatory light chain 9 isoform a [Homo sapiens]
ribosomal protein L12 [Homo sapiens]
Chain A, Human Adp-Ribosyl Factor 1 Compl
ADP-ribosylation factor 4 [Homo sa:_a!ens]
[«] |

B 5 O - —e—

d With Gdp, Full Length Non-Myristoylated

