
Author: Patrick Emery, Matrix Science Ltd
Version: 2024-03-13

Crea�ng a custom Dis�ller report
Reports in Mascot Dis�ller 2.8 and later are generated using Python scripts and our Mascot Parser

API. A report consists of two separate files:

1. The main report Python file

2. An XML file which defines the report inputs, and any GUI wizard pages required to take input

op�ons from the user.

In this tutorial, we’ll take a look at how to create your own custom reports for Mascot Dis�ller. In

order to write your own reports, you should have a good working knowledge of the Python

programming language, and also be familiar with our Mascot Parser library, used to access the search

and quan�ta�on results (h�ps://www.matrixscience.com/msparser.html).

Se�ng up your development environment
Mascot Dis�ller ships with an embedded version of Python 3.6 and a number of useful libraries

including Mascot Parser, pandas, Matplotlib and others. In order to develop your own reports, you

want to use a matching environment. If you’re running development on the same PC as Dis�ller is

installed on, you can do this by simply poin�ng your development environment to use the Python

installed by Dis�ller (C:\Program Files\Matrix Science\Mascot Dis�ller\python-3.6.5-embed-win-

amd64 by default). For example, in Microso�’s free Visual Studio Code:

Click on the Python version number in the bo�om right of the editor

This will open a ‘dialog’ in the top middle of the editor pane. Click on “Enter interpreter path…”:

This will change the interface – now click on “Find”:

And browse to the Python executable located in “C:\Program Files\Matrix Science\Mascot

Dis�ller\python-3.6.5-embed-win-amd64”:

If you’re developing the report on a different PC, you can install Mascot Dis�ller for free on your

development PC. This will install Dis�ller in viewer mode, which includes the embedded Python and

is sufficient for developing and tes�ng your own Python reports.

Example report – Top 3 Intensity
As an example of how to create a custom report for Mascot Dis�ller, we’ll work through crea�ng a

new report which calculates the Average (top-3) protein intensity for all sample components and

generates a CSV export file.

XML configura�on file
As men�oned above, a Dis�ller report requires two separate files – the Python source file which runs

and generates the report, and an XML file which defines the report inputs and outputs, the

supported quan�ta�on protocols and the output file type. The report file can be called anything of

your choosing, although the filename should end with the extension “.py”. The XML file must match

the name of your Python report file, with “.xml” appended to the end. So we’ll call our top-3

intensity report files:

 top-3.py

 top-3.py.xml

We’ll start by defining the XML file. This should implement the “dis�ller_report_defini�on_1.xsd”

XML schema, which is shipped with Mascot Dis�ller. You’ll find a copy of it in the Mascot Dis�ller

installa�on directory. The XML file defines which quan�ta�on protocols the report supports, so that

Mascot Dis�ller will disable it if you don’t have search results of the correct type, and where in the

menu the report will appear in Dis�ller, as well as any inputs the report requires.

Dis�llerReport is the root element. The “�tle” a�ribute should be set to give the name of the report,

and the grouping a�ribute the “path” to the report in the GUI. In our example, these are set to “Top

3 protein intensity” and “Custom” respec�vely:

<DistillerReport majorVersion="1" minorVersion="0" title="Top 3 protein

intensity" grouping="Custom"

Our report would be accessible in the Dis�ller GUI under Analysis->Reports->Custom->Top 3 protein

intensity. The grouping a�ribute can describe a more complex path – for example Custom/Intensity.

The Supports element has a series of a�ributes which can be set to true or false to define which

quan�ta�on protocols (h�ps://www.matrixscience.com/help/quant_overview_help.html) the report

supports. In this case, we’ll write the report to use data from any of the quan�ta�on protocols

supported by Mascot:

<Supports average="true" precursor="true" replicate="true" reporter="true"

multiplex="true"/>

The next sec�on of the XML file defines the report inputs. There are two sec�ons to this. The

“ReportConfigura�on” element defines fixed input values which are passed through to the report

and also available to Dis�ller. For our example, we want to tell Mascot Dis�ller that the report will

generate a CSV file:

<Parameter name="exportFormat" label="Format" value="CSV" type="text"

mapsTo="ExportFileType"/>

This maps to a standard report variable – “ExportFileType”.

We also want to define a variable that can be used later on in the XML to decide whether or not to

show a Wizard page to the user to select a contaminants database for exclusion from the report:

<Parameter name="databaseCount" label="no databases" type="integer"

value="@{DatabaseNames.Count}"/>

The @{DatabaseNames.Count} value tells Dis�ller to subs�tute in the number of databases, while

the type tells it that this is an integer value.

The “Wizard” element defines any GUI Wizard which should be displayed to the user running the

report in order to set any required values. A�er opening the Wizard element, you need to define a

“WelcomeText” element – this creates an opening page for the Wizard describing the report. A�er

this we add one or more “Page” elements, which should define inputs for the user to make. Finally,

we end with a “Comple�onText” element, defining a final page to display before the user runs the

report.

For example, the XML below adds a Page which defines a drop-down list from which the user can

choose the pep�de selec�on criteria for the Average top-3 protein component intensity calcula�on:

 <!--Subsequent pages which take user inputs are defined by Page

elements. The value of the "title" attribute will be displayed-->

 <!--at the top of the page in the GUI-->

 <Page title="Peptide selection criteria">

 <!--HelpText is displayed above the page parameters to give

instructions to the user-->

 <HelpText>The selection type determines whether the n peptides

must have different sequences (unique_sequence) or whether to accept different

modification states of same sequence (unique_mr), or even to accept peptides

with same sequence and modifications in different charge states

(unique_mz)</HelpText>

 <!--On the first page, we'll define the peptide selection

criteria. This is a drop down "select" box with the 3 supported-->

 <!--options, allowing the user to pick one. You can find a

description of the options at-->

 <!--http://www.matrixscience.com/help/quant_average_help.html-

->

 <!--The selected option is set to the parameter

"selectionType", which can then be accessed in the Python script-->

 <Parameter name="selectionType" label="Selection type"

type="select">

 <!--Set the default selected option using the selected

attribute-->

 <Option value="unique_sequence" displayString="Unique

sequence" selected="true"/>

 <!--"value" is the value which will be set to

selectionType if the option is selected-->

 <Option value="unique_mr" displayString="Unique Mr"/>

 <!--and displayString defines the text which will be

displayed for the option in the GUI-->

 <Option value="unique_mz" displayString="Unique M/Z"/>

 </Parameter>

 </Page>

Python report file
The Python environment supplied with Mascot Dis�ller includes a number of useful libraries, such as

our Mascot Parser library for parsing Mascot search and quan�ta�on results and a number of third

party libraries including pandas. Addi�onally, we ship a number of helper libraries which simplify

extrac�ng the required result values, which we’ll use to simplify the ini�al loading of the search and

quan�ta�on results.

At the head of the Python script, we’ll import the libraries we want to use:

import sys

import CreateQuantDataFrames

import pandas

import msparser

import io

import WriteReports

import LoadQuantitation

msparser in the library name for Mascot Parser. CreateQuantDataFrames, WriteReports and

LoadQuan�ta�on are all helper libraries that we’ll be using to load the data into pandas dataframes,

and to format the final report. These transform the results into pandas (h�ps://pandas.pydata.org/)

data structures. You can find these in the “reports” directory in the Dis�ller Python installa�on.

Addi�onally, we’ll be using msparser to access the results.

sys and io are standard Python libraries.

In the body of the script, the first thing we want to do is ini�alise a global msparser logging object.

This will output anything we choose to log to the standard output of the script – Dis�ller will capture

this and include it in its own log file (provided the required log level is set). You can find more

informa�on on logging in the Mascot Parser API documenta�on.

create an msparser logger

mylogger_ = msparser.ms_stdout_logger()

Now we’ll start the actual main method of the report. The report script itself is heavily commented

to explain what the various steps and calls are doing, so we won’t run through every line here. If you

have any ques�ons regarding the script, please contact Matrix Science support.

Mascot Dis�ller passes the report se�ngs out to the Python script as a CSV file. If you want to take a

look at the contents of the file being passed to a report, you can do so by se�ng the Dis�ller debug

levels. Under Tools->Log->Preferences, include “Debug 1”, and the contents of the CSV file will be

added to the Dis�ller log file when you run a report. To simplify parsing the CSV file to extract the

required se�ngs, we’ll load the CSV into a PANDAS dataframe:

 propsPath = sys.argv[1]

 # Load in properties.csv - this is the settings file written out to Python

from Distiller

 # with the report configuration to run with

 props_csv = pandas.read_csv(propsPath, delimiter = ',', header = 0,

keep_default_na = False, quotechar="\"")

And then make subsets of the se�ngs to more easily access the values – for example, we’ll get the

“selec�onType” value we defined in the .xml file and which the user has set in the Wizard and set it

to a variable called peptideSelectionType:

 # Create subsets of the properties file

 props_logging = props_csv[props_csv.Identifier == ‘LoggingOptions’] # Log

and column mask

 props_summary = props_csv[props_csv.Identifier == ‘SummaryInputs’] #

creating peptide summary flag settings

 props_selectionType = props_csv[props_csv.Identifier == ‘selectionType’] #

Peptide selection criteria for the top-3 calculation. See top-3.py.xml

 peptideSelectionType = props_selectionType.Input1.iloc[0]

 excludeDatabase = float(props_analysis.Input5.values[0]) if

props_analysis.Input5.values[0] != ‘’ else ‘’ #(numeric) Database to exclude

in analysis. If 0, all databases are used

 savePath = props_options.Input2.iloc[0] # file path to save the report

to.

The next part of the method calls a helper method in LoadQuan�ta�on to load our search and

quan�ta�on results using the relevant se�ngs we’ve just loaded in from the csv proper�es file:

 # load the peptide summary, quantitation results etc using the helper

method in the supplied LoadQuantitation file

 loadRes = LoadQuantitation.DoLoad(propsPath)

This returns an array which we’re se�ng to a variable called loadRes, which we’ll pass to a new

method in our script, along with the other required se�ngs, which will generate the actual report:

 # call the function to generate the report

 CreateTop3Report(loadRes, excludeDatabase, peptideSelectionType, savePath,

props_header, props_rawfiles, exportHeader)
We’ve documented the input parameters for the func�on in the script – no�ce that we’re passing

through our loaded results array, details of any contaminants database, the pep�de selec�on type

selected by the user etc.

Creates the top-3 intensity report

\param loadedResults The loaded search and quantitation results.

\param excludeDatabase The contaminants database index to exclude from the

report (if set)

\param peptideSelectionType The peptide selection/grouping criteria selected

by the user on the report Wizard

\param savePath The report export path defined by Distiller

\param props_header Header properties passed in from Distiller

\param props_rawfiles Raw file properties information passed in from

Distiller

\param exportHeader String set to "True" or "False" depending on the user

selection on the report Wizard

def CreateTop3Report(loadedResults, excludeDatabase, peptideSelectionType,

savePath, props_header, props_rawfiles, exportHeader):

 # Check we have results

 if (len(loadedResults) == 0):

 sys.exit("No Results Parameters Supplied")

The first step in the method is to sanity check that we have loaded search and quan�ta�on results –

if not, exit the script with an error message.

Next, we need to access the search and quan�ta�on results and determine which quan�ta�on

protocol was used (reporter, precursor, label free, average etc), as the way we need to access the

actual pep�de component intensity values will depend on this – for example, to check if we have

“Average (top-3)” label free quan�ta�on results, check if the quan�ta�on method protocol has the

Average method set:

 # Get the msparser ms_peptidesummary, quantitation results back from the

loadedResults array

 isMS1 = loadedResults[0].isMS1 # MS1 quantitation results? True or false

 quant = loadedResults[0].qObj # The quantitation results (either

ms_ms1quantitation or ms_ms2quantitation depending on whether or not isMS1 is

true)

 pepSum = loadedResults[0].pepSum # The ms_peptidesummary (protein hits)

 qMethod = loadedResults[0].qMethod # The quantitation method definition

(ms_quant_method)

 # MS2, Precursor and Average quantitation methods all require different

handling to find the individual peptide component intensities

 isAverage = False

 if isMS1:

 isAverage = qMethod.getProtocol().getAverage() != None

Then we need to get the individual component (sample) names from the quan�ta�on method:

 # Get the component names

 componentNames = []

 if isAverage:

 componentNames.append('Avg')

 else:

 for c in range(0,qMethod.getNumberOfComponents()):

 component = qMethod.getComponentByNumber(c).getName()

 componentNames.append(component)

We’ll be calcula�ng the top-3 intensity protein intensity values for each component/sample

individually. We’ll need to get our protein hits from msparser for this, using one of our supplied

helper methods to pull all the anchor proteins into an array, which we’ll call proteins:

 # Helper method which pulls the anchor protein ms_protein results from the

peptide summary into an array.

 proteins = CreateQuantDataFrames.pullProteinsFrom(pepSum)

Now we can loop through each protein and calculate the sample intensity values:

 end = len(proteins)

 # this will be an array of arrays containing the data to export to the CSV

file

 data = []

 for i in range(0, end):

 # output progress information

 WriteReports.OutputProgress('Calculating protein intensity values',

(i+1), end)

WriteReports.OutputProgress allows us to pass progress informa�on back to Mascot Dis�ller for

display to the user. The text will be displayed in the progress bar, while (i+1) and end are out current

posi�on in the loop and the final point respec�vely – these will be converted to a percentage

completed.

Now, we access the current protein at the index i in our proteins array and set up a new row for the

report table, skipping any protein that comes from the user specified contaminants database (if any):

 row = []

 protein = proteins[i]

 # skip any protein hits from the selected contaminants database

 if protein.getDB() == excludeDatabase:

 continue

We’ll start our output row with the protein hit number and accession:

 hitNo = protein.getHitNumber()

 if protein.getMemberNumber() > 0:

 row.append("{}.{}".format(hitNo,protein.getMemberNumber()))

 else:

 row.append(hitNo)

 row.append(protein.getAccession())
Now we can calculate the protein intensity for each component. We loop through the

componentNames array we defined earlier, and call another procedure defined later in the script –

calculateProteinIntensity – passing in the ms_protein instance along with the ms_pep�desummary,

quan�ta�on results, component name, method details and the user defined pep�de selec�on

criteria.

This returns the calculated average intensity for the protein sample, and we’ll add it to the row:

for name in enumerate(componentNames):

 intensity = calculateProteinIntensity(protein, pepSum, quant,

name, isAverage, isMS1, peptideSelectionType)

 if intensity > 0:

 row.append(intensity)

 else:

 row.append(‘’)

calculateProteinIntensity is fully documented in the script source code, so you can see there how the

average intensity values are calculated. We’ll end the protein row with the descrip�on taken from

the FASTA entry, and then append the row into our data array:

row.append(pepSum.getProteinDescription(protein.getAccession()))

 data.append(row)

This procedure is repeated for each protein hit in the results. Once that is completed, we need to

put together the column header informa�on:

 # create a pandas DataFrame from our data array with column headers

 header = []

 header.append(‘’)

 header.append(‘Accession’)

 for name in componentNames:

 header.append(“{} {}”.format(name,’intensity’))

 header.append(‘Description’)

We can then convert our data array containing all the protein intensity informa�on into a pandas

data frame with our header:

 # pull the data into a Pandas DataFrame

 # to easily output a CSV file with a header but no row index

 df = pandas.DataFrame(data, None, header)

The advantage of doing this is that the pandas library has methods which will allow us to easily

export the data into a CSV file without having to write any of our own export code, simply by calling

the to_csv method of the data frame:

 if exportHeader == 'True':

user has requested the complete report header be exported

 # code snipped, see the Python script

 else:

 # if we don't want to add a header, can write directly to the file

path rather than a string:

 df.to_csv(savePath, ',','',None,None,True,False)

Our report script is now ready. Copy the .xml and .py files to “C:\ProgramData\Matrix

Science\Mascot Dis�ller\reports” directory on the worksta�on with your Mascot Dis�ller

informa�on. Restart Mascot Dis�ller and you’ll see your custom report appearing in the Mascot

Dis�ller in the path defined in the XML file.

Note: Once the script is registered, you can update the .py or .xml files without restar�ng Mascot

Dis�ller. The only change that won’t be reflected without restar�ng Dis�ller are any changes made to

the “grouping” element of the XML file.

If we now click to run the report, Mascot Dis�ller will generate the report wizard automa�cally from

the XML, allowing the user to run the report:

When completed, the generated CSV file will open automa�cally in the so�ware registered on your

system to handle CSV files – in our case, Excel:

