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A scoring procedure is described for measuring the quality of the results for protein
identifications obtained from spectral matching of MS/MS data using the Sequest database
search program. The scoring system is essentially probabilistic and operates by estimating the
probability that a protein identification has come about by chance. The probability is based on
- : tein, the total number of identified peptides

» present in the identified

the number of identified peptid.
of distinct try
protein. The score is not stric E
quality of the individual peptide matches. The result of n a large test set of data

and the fraction

was similar to that achieved using approaches that validate individual spectral matches, with
only a narrow overlap in scores between identified proteins and false positive matches. In
direct comparison with a published method of evaluating Sequest results, Qscore was able to
identify an equivalent number of proteins without any identihiable false positive assignments
Qscore greatly reduces the number of Sequest protein identifications that have to be validated
manually. (] Am Soc Mass Spectrom 2002, 13, 378-386) © 2002 American Society for Mass
Spectrometry
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Its easy to grasp the concept of using a target/decoy search to estimate peptide false
discovery rate. You search against a decoy database, in which there are no true matches
available, so the number of observed matches provides a good estimate of the number of
false matches from the target database. I think this is the first time this approach was
applied to database search using MS/MS data, by Terry Lee’s group in 2002, but the
method only became widespread in proteomics after the publications from Steve Gygi’s
group.

The most popular way to create a decoy database is to reverse the protein sequences in
the target database. When reversed entries are digested, we get a population of peptides
that have most of the characteristics of target peptides. Certainly, in terms of the qualities
scored by search engines, such peptides are perfect decoys.



What is a false protein?

« A database entry that has only false
peptide matches?
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Protein false discovery rate is not so easily estimated. First of all, what exactly do we
mean by a false protein? A possible definition might be a database entry that has only
false peptide matches. These are clearly junk, so best to filter them out by requiring
every protein to have significant matches to two or more distinct peptide sequences. This
eliminates the ‘one-hit wonder’ proteins, where a false peptide match has been assigned
to a protein for which there is no other evidence.



‘One-hit wonders’

« Safe if # PSMs < # database entries

» Consider this search:
« SwissProt 2014_05 human (20265 entries)
«Large data set, 1% FDR
« 100,000 target matches
1,000 decoy matches
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If you have a large number of matches in a search of a small database, filtering out one-
hit wonders may not be enough. We can calculate the distribution of false peptide
matches using Poisson statistics. SwissProt 2014 05 has 20,265 human entries. If we
searched a large data set and got 100,000 matches at 1% peptide FDR, this would
correspond to 1000 false peptide matches.



Poisson distribution
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The Poisson distribution predicts that, on average, 952 database entries will get one false
match, 23 entries will get two, and less than one will get three. If an entry has two false
matches to different sequences, it will pass a ‘one hit wonder’ filter, so we could have as
many as 23 false proteins in our report. If this is too many, we raise the bar, require
significant matches to three or more distinct peptide sequences, and the anticipated
number of false proteins drops to less than one.



What is a false protein?

« A database entry that has only false
peptide matches?
«Yes - filter these out by requiring each protein to

have significant match
distinct sequences
« All remaining proteins are true?
*No!
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Problem solved? Not if our goal is to present an accurate list of the proteins that were
present in the sample.



Protein inference
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I’m sure everyone is familiar with the concept of same-set and sub-set proteins. If we
search a comprehensive database, like NCBInr, same-set proteins will be common.
Reporting just one of means that the count of proteins is probably correct, but we have no
idea which one of the same-set proteins is actually present in the sample because protein
inference only considers the peptide matches. It ignores the unmatched parts of the
sequence and there is no penalty for the matches we fail to observe. So, even though the
same-set proteins might be very different in any biological sense, we can only report that
we have at least one out of the set.

However, its differentiable proteins that pose the real problem. Do we report one of them,
or all of them?



Protein inference in shotgun
experiments - limitations

« Discard protein level information
+ Have to rely on parsimony
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We have to recognise that protein inference in shotgun proteomics is subject to some
serious and fundamental limitations.

When we analyse a pure protein from a 2D gel spot, protein inference is much easier. If
you can identify one peptide, you should be able to identify several, and with high
coverage, one database entry becomes the clear winner. Other entries may contain some
of the same peptides, but unless they also have similar protein mass and pl, they can be
ruled out.

In shotgun proteomics, the protein level information is discarded in the interests of speed
and scale, and protein inference comes to rely on parsimony, alone.



Protein inference in shotgun
experiments - limitations

« Discard protein level information
+ Have to rely on parsimony

« Low or unknown coverage
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In most shotgun experiments, the peptides are under-sampled. That is, MS/MS scans are
acquired for the stronger peptide signals but the weaker ones get overlooked, and the
number of different peptides observed for a particular protein depends on its abundance
as well as its length. On the plus side, this is the basis of spectral counting as a method of
quantitation. On the minus side, it means we can’t assume that a protein with low
coverage is a false protein. It could be a true protein that happens to be present at a low
level. Not that we actually know what the coverage is, because we don’t have masses for
the proteins. When we talk about coverage, this means coverage for the database entry,
not for the protein. Any attempt to use coverage in protein inference simply favours the
shortest database entry that contains the observed matches.



Protein inference in shotgun
experiments - limitations

« Discard protein level information
+ Have to rely on parsimony

« Low or unknown coverage
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Some day, it may become routine to create a custom database for the individual proteome
under analysis using a technique such as RNA-Seq. Right now, most searches are against
the public protein databases, and these will not contain perfectly correct sequences for
many of the proteins in the sample. In the absence of the correct sequence, matches are
assigned to a set of homologous entries.



-y 1 gil 76363596 1155 Rechame: Full=sS.
1 gilzersser 953 samm atoumin

Threshold (0): 0 Cut

Score Mass Matches Sequences emPAl

1.1 7 Qi 76363590 1155 70490 50 (30) B (28) 3.50 Reciame:

P 1 sameset of gi| 126723507
Redisplay | All | | None

‘w53 peptide matches (39 non-duplicate, 14 duplicate)
¥ Auto-fit to window
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#1790

479.2950 954.5834 954.4811 12 b1
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FuiisSerum aibumin; Fiags

1.2 fgi| 126723507 993 70550 46 (46) 27 (27) 3.39 serum slbumin precursor [Equus cabal Hus
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This search result illustrates. Much too small to estimate the peptide FDR with any

accuracy, but the significance threshold has been set to a level where the count of decoy

peptide matches is zero. In hit 1, most of the peptide matches are shared between two
sequences, but each protein also has many significant matches that are not shared
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Generic databases

« NCBInr, taxonomy Equus, significant PSMs

« 25 shared sequences
«Unique to gi| 76363596

+Y.ATVFDQFTPLVEEPK.S
+K.CCGAEDKEACFAEEGPK.L
«D.PPACYATVFDQFTPLVEEPK.S

«Unique to gi| 126723507
+F.SALELDEGYVPK.E
+R.RPCFSALELDEGYVPK.E
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Range 1: 1 to 607 GanPant Granhice
Score Expect Method Identities Positives Gaps
1210 bits(3131) 0.0 Compositional matrix adjust. 598/607(99%) 599/607(98%) 0/607(0%)

Query 1 MEWVTFVSLLFLFSSAYFRGVLRRDTHRSEIAHRFNDLGERHFRGLYV
MEWV" AY RGVLRRDTHRSEIAHRFNDLGERHFRG.

AFSQYLQQCPF 60
SQYLQQCEF

sbject 1

Query 61

D!

E C
8bjct 61 TEFARKCAADESAEN

Query 121 ERNECFLTHRDDHPNLPRLEPEPDA
ERNECFLTHRDDHPNLPRLKPEPDA
Sbjct 121 ERNECFLTHKDDHPNLPKLEPEPDA

QEDPDRFLGRYLYEVA
QEDPDEFLGRYLYEVA
'QEDPDKFLGKYLYEVA

Query ADFTECCPADDRAGCLIPRLDALRERILLSSA
PADDE CLIPRLDALRERILL:
Sbjct PADDELACLIPKLDALKERILLSS,
Query 241 RLSQRFPRADFAEVSKIVTDL ADDRADLTRYICEHQDSISGKLEA 300
RLSQKFPEAD ECADDRADL KYICEHQDSISGKLEA

Sbjet 241 RLSQRFPRAD LLECADDRADLARYICEHQDSISGRLEA 300
360
380

FDQFTPLVEEPKRJLVKRNCDLFEE 420
FDQFTPLVEEPEJLY
FDQFTPLVEEPK.

KENCDLFEE 420

PESERLPCSENHLALAL 480
PESERLPCSENHLALAL
VGSRCCELPESERLPCSENHLALAL 480
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BLAST alignment between the two protein sequences shows them to be 99% identical.
The alignments for the ‘unique’ peptides are highlighted. When you look at it like this, it
becomes clear that we don’t have two distinct proteins, just a variant that is not 100%
identical to either of the two database entries. In other cases, these differences might
have corresponded to splice variants, and there are indeed two different, but homologous
proteins. In other words, deciding whether a pair of differentiable proteins should be
reported as one or two isn’t a matter of numbers or statistics. It requires an understanding
of the relationship between the database sequences and whether the true protein is a third
sequence, not present in the database.
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Protein inference in shotgun
experiments - limitations

« Discard protein level information
+ Have to rely on parsimony

« Low or unknown coverage
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« Generic databases
» Many database sequences will not be 100% correct
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If you don’t have time to study every hit, one way to simplify things is to search a non-
redundant database. If your sample is from a well characterised organism, then SwissProt
is always a good choice. Some peptide matches will be lost, which could lead to the loss
of true proteins that had very low coverage, but the list of proteins with reasonable
coverage will be more reliable in that you are less likely to over-report.
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Protein inference in shotgun
experiments - limitations

Discard protein level information
+ Have to rely on parsimony

Low or unknown coverage
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Generic databases
» Many database sequences will not be 100% correct

Artefacts from modifications

MASCOT : Protein FDR ©2014 Matrix Science %J}EIISII(%(E

Including an unnecessary modification in a search or omitting a modification that is
actually present in the sample can cause false peptide matches that lead to the wrong
protein being inferred.
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MS'MS Fragmentation of DGKYDLDFK

Match to Query 44697 1099 521672 from(367 £14500,3+) index(45652)

Titke Ehsion from 46 6455 1o 46 6438 period 0 experiment | cycles. | FanegmScanNumber. 14941
Local Instrment. ESI-FTICR

Data fle ] _merged mgf

Click mouse within plot area to zoom in by factor of two about that point

Or, [ Plotkom | [100 o 850 Ds | Fullange
Label all possible matches Label matches used for scoring *
Show Y-ads

Found i P09104 in Usi_ProtKB_buman, Gamma-enclase OS=Homo sapiens GN=ENO2 PE=] $V=3

Artefacts from modifications

MSMS Fragnentatoa of NGKYDLDFK

Found in P13929 i Uni_ProtKB_kuman, Beta-enolase OS=Homo sapiens GN=ENOQ3 PE=1 SV

Match to Query 44697 1099 521672 from(367 £14200,3+) index(45652)

Titke: Edution fromx 46,6455 to 46.6455 period 0 experiment 1 cycles: | FinpeganScanNumber: 14941

Local lnstrument ESI-FTICR
Data fle run]_merged mef

Click mouse within plot area 10 200m i by factor of two about that poiat
Or, | Plotkom | 100 o 850 Da Full range
Label al possible matches ©/  Label matches used for scoring
Show Y.axis
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The most frequent culprit is deamidation. The same peptide sequence may occur in two
different proteins except that in one it has a D at a particular position and in the other an
N. If the true protein is the one with the D, but the search included deamidation, we get
an equally good match for the false protein. If the true protein is the one with the N, but
it is mostly deamidated, we may not see the match for the true protein unless the search

includes deamidation.
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Artefacts from modifications

]
o

N + deamidation
Q + deamidation
A + oxidation =S
S + acetyl = E

A + carbamyl = N
M + oxidation = F (delta 0.033 Da)

|
m
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Deamidation is insidious because the substituted residue is also the site for the
modification. There are many other cases where a common modification exactly
compensates for a residue substitution, such as A + oxidation =S, S + acetyl = E, and A +
carbamyl = N. But, the residue itself is not a common site for the modification, so the
score for the match will suffer unless the modification can be located adjacent to the
substitution, which will happen less frequently. The other common example is M +
oxidation = F. The mass difference is 0.033 Da, so this can give an equally good match
unless the mass accuracy is very high.
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Protein inference in shotgun
experiments - limitations

Discard protein level information
+ Have to rely on parsimony

Low or unknown coverage
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protein

Generic databases
» Many database sequences will not be 100% correct

Artefacts from modifications
» Especially deamidation
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Protein inference is a complex problem, which can be made even more difficult by
conflicting goals. A shotgun survey of the total protein complement of a complex sample
is one thing. Detailed characterisation of individual proteins of interest is another. We
cannot expect to get both from a single experiment.
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How to minimise over-reporting

+ Keep pH low to minimise artefactual deamidation
and do not specify deamidation as a variable
modification

¢ Search a non-redundant database
» Set the peptide FDR to 1% or less

» Filter out the ‘totally’ false proteins by requiring
significant matches to a minimum number of
distinct sequences.
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If the primary aim is an accurate list of the proteins in a complex sample, there are
several steps we can take to minimise over-reporting:
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b1 P10809 64466 60 kDa haat shock protein, mitochondrial OS=Homo sapians GN=HSPD1 PE=1 Sv=2

»2 1 PO6733 33626 Alpha-enclase OS=rHomo sapians GN=ENOL PE=1 Sy=2
4 P13929 11436 EBeta-enclase OS=Homo sapiens GN=ENO3 PE=1 §
2 P06733-2 29246 Isoform MBP-1 of Alpha-enclase OS=Homo =i N
3 P09104 12658 Gamma-enclase OS=Homo sapiens GN=ENOZ PE=1 Sv=3

b3 1 P60709 24030 Actin, cytoplasmic 1 OS=Homo sapiens GN=ACTE PE= i
4 QIBYX7 1704 Putative beta-actin-like protein 3 OS=Homo sapie =POTEKP PE=3 SVl
2 Q65813 16874 POTE ankyrin domain family membar € OS=Home
3 P68032 2710 Actin, slphs cardisc musce 1 OS=Homo sapiens GNeACTC1 PE=l Svel

ng GN=POTEE PE=1 Sv=3

Pa 1 P68104 19783 Elongation factor 1-alphs 1 OS=Homo sapiens GN=EEF1A1 PE=1 SVe1
q 2 Q05639 14228 Elongation factor 1-alpha 2 OS=Homo sapiens GN=EEF1AZ PE=1 Sv=1
...... P T
ks 1 P35579 17697 Myosin-9 OS=Homo sapians GN=MYHS PE=1 SVmd
_{_|: 3 Q7Z406-2 2806 Isoform 2 of Myosin:14 OS=Homo sapians GN=MYH14
2 FBWGL6 5435 Myosin-10 OS=Homo sapiens GN=MYH10 PEs2 Svel
e I
[ 1 P05783 16656 Karatin, type 1 cytoskeletal 18 OS=Homo sapiens GN=KRT18 PE=1 Svez
5 P13645 233  Keratin, type | cytoskeletal 10 OS=Homo sapiens GN=KRT10 PE=1 Sv=6
3 P14923 3174 Junction plakeglobin OS=Home sapiens GN=JUP PE=1 Sve3
4 BADGU4 2457 Catenin beta-1 OS=Home sapiens GN=CTNNBL PE=2 Sv=1
2 PO8727 7059 Keratin, type I cytoskeletal 19 OSeHomo sapiens GNeKRT19 PEs] SVed

1200
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If there is still ambiguity for a protein of interest, additional experiments will be required.
The protein family summary, introduced in Mascot 2.3, attempts to present the search
results as clearly as possible, so that you can make up your own mind about what to
believe.



w2 1 P06733 33622 A
4 P13929 11435
2 PO6733-2 29241
3 P0O9104 12658 o
R B R
“
Threshold (0): 0 Cut
Score  Mass Matches Sequences emPAI
21 2P06733 33622 47481 1058 (1058) 24 (24)
2.2 SP06733-2 29241 37247 940 (940 18 (18)
2.3 #P09104 12658 47581 417 (417) 19 (19)
¥2.4 #P13929 11435 47299 362 (362 5(5)
# 2 samesets of P13929
Redisplay | | All | | None
w1136 peptide matches (102 non-duplicate, 1034 duplicate)
¥ Auto-fit to window
Query Dupes Observed Mr(expt) Mr(calc) ppm M Score Expect
J8689 380.1847 758.3548  738.3559 1.36 " 903
5145 1099.5217 1099.5186 2.811 36 00025
367.5145 1099.5217 1099.5186 2.821 36 0.00041
4 65.8145 1129.6144 1129.6131 1.150 15 ]
sa
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The members of each family are differentiable proteins, connected by shared matches but
with at least one unique match each. In this family, there is little difference between
alpha and beta enolase. You can drop beta enolase automatically by cutting the
dendrograms at a score of (say) 50. In this case, this would be a very smart move,
because studying the results shows that the only match unique to beta enolase is the
deamidated peptide we were looking at earlier.
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33622 Alpha-enclase OSeHoms sapiens GN=ENO] PEel SVl

vz 1 PO6733
2 PO6733-2 29241  tsoform MBE-1 of Alpha-enclase OSeHomo sapiens GN=ENOL
3 PO9104 12658 Gamma-anclase OSsHoms sapiens GNSENOZ PE=1 Sva3

. »
Threshold (50): 50 Cut
Score Mass Matches Sequences emPAl
< 2.1 “P06733 33622 47481 1058 (1058) 24 (24) 22.75 Alpha-enclase OS=Homo sapiens GN=ENOL PE=1l Svel
¥ 2.2 #P06733-2 290241 37247 940 (940) 18 (18) 22,13 Isslorm MES-1 of Alpha-anclase OS=Homs sapiens G
¥ 2.3 “P09104 12658 47581 417 (417) 19 (19) 4.45 Gamma-enclase OS=Homo sapiens GNeENOZ PE=1 SVal

Redisplay | | All || None

w1128 peptide matches (101 non-duplicate, 1027 duplicate)}
¥ Auto-fit to window

Mr{expt) Mr(calc) pPm M Score
758.3548  7158.3559 -1.36 0 24

Deamidated (M)

I + Deamidated (WQ)

LR.N
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By cutting the dendrogram at a score of 50, beta enolase becomes a sub-set protein. As it
would have been if the search hadn’t included deamidation.
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Does protein FDR have any meaning?

Remaining peptide  Empirical absent peptide
....... g peptides score distribution score distribution

’ > 2|
o3 Y :
T / a8 -1
S [ i R
& § Empirical sore distribution of PSM score PSM score
- Q) peptides from present protein \——-——ﬁ_——-——J
sel (shaded) in unk nown

Compute probability that both are
drawn from the same distribution
= npCl{protein set)

p I  of id ified proteins. Under the supposition that the identified protein set

Assume evaluated protein
set (shaded) is present

Fia. 1. & for
(blue) is presant, all peptides matching those proteins (also biue) might be present and have an unknown score distribution. When the comect
set of proteins is identified, the remaining peptides (iLe. those not matching any shaded proteins in this figure) have a score distribution
resembiling that of absent peptides. Thus, the similarity of the remaining peptide score distribution (red dashed line) to the absent peptide score
distribution (black solid line) determines the quality of the identified proteins.

T

0. Serang, J. Paulo, H. Steen, and J. A. Steen, A Non-parametric Cutout Index for
Robust Evaluation of Identified Proteins, Mol Cell Proteomics 2013 12: 807-812.
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And the question in the title? I think the answer is no, unless you are willing to accept the
(not very useful) definition of false proteins as database entries that have only false
peptide matches. If we are trying to present a list of proteins that is accurate in any
biological sense, it is very important to be aware of the issues associated with protein
inference in shotgun proteomics. Statistics can give us a handle on how many proteins
might be present, as in this ingenious approach from Hanno Steen’s lab. But, knowing
which proteins are present out of the same-sets and sub-sets and differentiable sets,
which I think is implicit in the concept of protein FDR, is a very different matter.
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