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The first draft assembly of the human genome was

announced on 26 June 2000 (Refs 1 and 2). This is the

first vertebrate genome to have been sequenced and, at

3.2 Gbp, it is also the largest. As of 7 June 2001, more

than 50% of the sequence remained in draft form.

Nevertheless, the assembly provides a comprehensive

view of the genome and is an extraordinary resource.

Intriguingly, the estimated 28 000–40 000 human

genes are encoded by only 2–5% of the genome. The

broad range of this estimate reflects the limitations of

current gene-prediction methods in annotating genes

from eukaryotes. Gene-discovery algorithms based on

statistical and homology methods facilitate the identifi-

cation of known genes, but are inadequate for locating

novel genes3,4. The application of alternative methods,

particularly the use of expressed sequence tags (ESTs), has

proved to be valuable in verifying and defining coding

regions5. However, this approach also has its drawbacks,

as EST representation tends to be biased by expression

level, tissue, and cell type. In this review, we consider the

use of mass spectrometry (MS) data in direct database

searching of the human genome, and also discuss its

application in gene mining.

Methodology
Protein identification by searching MS data against a

transformed database of molecular sequences is a core

technology in proteomics6,7. One approach, peptide-

mass fingerprinting, compares a set of measured peptide

molecular-mass values from a proteolytic digest against

values calculated by in silico digestion of sequences from

a protein database. Discrimination depends on the speci-

ficity of the protease and the constraint that the mass

values originate from a defined protein sequence. With

limited exceptions, this method cannot be applied to

short stretches of sequence, such as ESTs, or long, con-

tinuous sequences, such as genomic DNA. In such cases

(or when the sample is a protein mixture), the preferred

approach is to identify discrete peptides using MS–MS

data. The sequence tag method of Mann and Wilm

depends on prior interpretation of the MS–MS spectrum

to obtain a short stretch of amino acid sequence8,9.

Alternatively, uninterpreted MS–MS data can be searched

directly10–12.

In addition to protein identification, searching MS–MS

data against raw, unmasked genomic DNA can provide

primary experimental verification and correction of pre-

dicted coding sequences, together with the possibility of

identifying novel genes and elucidating splicing patterns.

In a eukaryotic genome, where coding sequences are

divided into exons and introns, a gene may extend over

100 kbp or more. The spatial distribution of peptide

matches will rapidly locate gene-containing regions and,

in most cases, each cluster of matches can be expected to

correspond to a single gene. Even the shortest exon can be

identified, as long as it spans at least one good peptide

match. However, matching a peptide that spans the

splice between two exons is difficult (Fig. 1). In general,

such matches will be missed when searching raw

genomic DNA, and can only be found by an iterative

process once the general location of the gene has been

identified.
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The use of mass spectrometry data to search molecular sequence databases is a
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of predicted coding sequences, and has the potential to identify novel genes and
elucidate splicing patterns.
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Searching ESTs
Searching uninterpreted MS–MS data against nucleic acid

sequences was first demonstrated by Yates and col-

leagues13. In general, the reading frame for translation is

unknown, and the nucleic acid sequence must be trans-

lated in all six frames before searching. This generates a

large quantity of effectively random sequence, within

which some degree of matching to the experimental data

will occur by chance. Yates and co-workers were able to

show that representative MS–MS data contained sufficient

information to discriminate a positive match from the

background of random matches. Of course, in 1995, the

databases were considerably smaller than today; the EST

database contained just 65 112 entries.

There are now many examples in the literature of

searching EST databases. For example, Neubauer and col-

leagues used this approach to characterize the human

multi-protein spliceosome complex14. For several impor-

tant organisms, EST databases offer more comprehensive

sequence coverage than any protein database. The error

rate might be high, but extensive redundancy means that

the chance of finding the correct sequence for the correct

variant is good. A disadvantage is that entry descriptions

can be unhelpful for protein recognition, so that it is

often necessary to BLAST the EST sequence against a pro-

tein database to comprehend what one has found.

A more fundamental limitation relates to the grouping

of peptide matches into protein matches. A liquid chro-

matography (LC–MS–MS experiment, in which the diges-

tion products of a protein mixture are analysed, could

produce hundreds or even thousands of MS–MS spectra.

The search process attempts to match these spectra to

peptide sequences. Following the search, a report will

then try to group the matched peptides into proteins.

These assignments might sometimes be arbitrary and

ambiguous, but they serve two important functions. First,

grouping makes the search results easier to comprehend,

and second, grouping can influence judgement as to

whether a weak match is correct or not. If ten strong

peptide matches are found in one particular protein, there

will be greater confidence that an eleventh, weaker match

to the same protein is correct, than if the weaker match

was an isolated one.

As ESTs mostly correspond to protein fragments,

extended groupings are rare.This can be rectified by using

an index, such as UniGene, to group EST matches into

gene families. UniGene (http://www.ncbi.nlm.nih.gov/

UniGene) is an index created by automatically partitioning

GenBank sequences using BLAST, to produce a non-

redundant set of gene-oriented clusters. In an example

taken from Choudhary et al.15, one grouping from a

search of dbEST (an EST database) using the Mascot

search engine12 contained three strong peptide matches

and one weak match [Fig. 2(a)]. Another grouping con-

tained five strong peptide matches and one weak match

[Fig. 2(b)]. Casual inspection of the report might easily

fail to see a connection between these two hits, in which

the only common peptide was the weak match to spec-

trum 50. However, when the ESTs were grouped by using

UniGene to translate dbEST accession strings into gene

identifiers, both sets of matches were found to corre-

spond to the same entry – Nucleophosmin [Fig. 2(c)].

Therefore the net effect of UniGene grouping was to sim-

plify the dbEST report, and make it equal in clarity to the

report from a protein database search.

Searching genomes
There are relatively few reports in the literature of searching

raw genomic DNA. Most are microbial studies, such as

Porphyromonas gingivalis (2.2 Mbp) (Ref. 16), Haemophilus

influenzae (1.8 Mbp) (Ref. 17), and Mycoplasma pneumonia

(0.8 Mbp) (Ref. 18). A more common approach is to

search compilations of nucleic acid sequences corre-

sponding to open reading frames19.

Raw, unmasked eukaryotic genome sequences present

a particular challenge because of both their size and the

arrangement of the coding sequence into exons and

introns. Küster and colleagues used a variation on the

sequence tag approach to search a database containing

some 95 Mbp of genomic sequence data from Arabidopsis

thaliana, believed to represent approximately 75% of the

complete genome20. Interpreted peptide sequence tags

were translated into sets of degenerate oligonucleotide

sequences for searching against the database. Peptides

identified in this way were used to refine exon predic-

tions from a variety of gene-finding programs. Having

located a gene using one or more sequence tags, high
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Figure 1. Peptides
that span exon
splices will be missed
when matching
uninterpreted
MS–MS data to
genomic DNA

In most eukaryotes, genes are
divided into protein-coding
exons (red) and non-coding
introns (orange). After
transcription to RNA, the
coding sequences are spliced
together before translation.
Hence, when the mature
protein is digested for analysis
by mass spectrometry, a
proportion of the peptides will
correspond to coding
sequences that span exon
splice sites.
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accuracy peptide molecular weight data from matrix-

assisted laser desorption–ionization (MALDI) could be

used to map the exon–intron boundaries. This approach

was also used to search a compilation of human genome

sequence data from GenBank, representing some 80% of

the complete genome. In a database of this size, short

sequence tags yielded multiple matches. However, the

authors were generally able to select a single match by

manual reconciliation of the putative sequences with the

complete MS–MS spectrum.

The feasibility of searching a complete eukaryotic

genome using uninterpreted MS–MS data was first inves-

tigated by Choudhary et al.15 An LC–MS–MS dataset from

a tryptic digest of human embryonic kidney cell lysate

Figure 2. The
UniGene index can
be used to group
ESTs that
correspond to the
same gene

Upper and middle
screenshots show two hits
from a search using the
Mascot search engine of a
standard liquid
chromatography–mass
spectrometry–mass
spectrometry (LC–MS–MS)
dataset against dbEST. 
The lower screenshot
shows the same peptide
matches grouped into a
single hit using UniGene
(http://www.ncbi.nlm.nih.gov/
UniGene/).



http://trends.comS20

TRENDS in Biotechnology Vol.19 No.10 (Suppl.)  October 2001Review | A TRENDS Guide to Proteomics

containing peptides from at least 22 human proteins, was

searched against a comprehensive, non-identical protein

database (MSDB), dbEST, and the International Human

Genome Project draft assembly of the human genome

(HG)1 (Table 1).The search engine was Mascot12, and the

same set of search parameters was used for all searches.

HG was searched as both intact chromosome length

sequences and also as 600 Kbp segments with small

(600 bp) overlaps.Table 2 contains summary statistics for

the observed peptide matches. After data reduction, the

LC–MS–MS dataset contained 169 spectra. Of these, 114

spectra were matched to peptides from human proteins

and 11 spectra were matched to a non-human protein

(bovine trypsin). A balance of 44 spectra remained

unmatched. Reasons for failing to match a spectrum

when searching a protein database are as follows:

• the peptide sequence is not in the database;

• the presence of an unsuspected post-translational

modification;

• the peptide is a result of non-specific cleavage;

• the spectrum is of poor quality; and 

• the spectrum is of a non-proteinaceous contaminant.

Several factors caused a significant reduction in the

number of matches found in HG. One was that several

well-characterized mRNAs were partially or completely

missing from the November 2000 assembly, such as

transaldolase (gene TALDO1, Swiss-Prot TAL1_HUMAN,

GenBank mRNA L19437). Another factor was that dbEST

contains extensive redundancy, whereas HG represents a

single consensus sequence. The sequences in both dbEST

and HG contain ‘errors’ of various types: experimental

sequencing errors, misalignments, polymorphisms, and so

Table 1. Sequence database sources

Type Name Compiler Download URL

Non-redundant protein nr National Center for Biotechnology ftp://ncbi.nlm.nih.gov/blast/db/nr.Z
Information (Bethesda, MD, USA)

Non-identical protein MSDB Proteomics Department, Imperial ftp://ncbi.nlm.nih.gov/repository/MSDB/msdb.fasta.Z
College London (London, UK)

Non-redundant protein NRP National Cancer Institute's Advanced ftp://ftp.ncifcrf.gov/pub/nonredun/protein.nrdb.Z
Biomedical Computing Center 
(Frederick, MD, USA)

Expressed sequence tag dbEST National Center for Biotechnology ftp://ncbi.nlm.nih.gov/blast/db/est.Z
Information 

Human genome draft HG International Human Genome Sequencing http://genome.cse.ucsc.edu/goldenPath/
assembly Consortium (University of California 12dec2000/bigZips/  

at Santa Cruz, CA, USA)

Table 2. Peptide matching statistics for Mascot searches of a standard
LC–MS–MS dataset against three types of databasea

Category MSDB dbEST HG

Top match with significant ions score 74 56 33

Top match, but ions score not significant 26 37 13

Not top match and ions score not significant 10 11 11

No match because of higher scoring, non-significant matches 0 6 11

No match because peptide sequence not found in MSDB 4 0 0

No match because peptide sequence not found in dbEST 0 2 0

No match because coding sequence substantially missing from HG 0 0 15

No match because coding sequence poorly aligned in HG 0 0 10

No match because peptide spans exon/intron boundary in HG 0 0 19

No match because peptide results from non-tryptic post-translational processing 0 2 2

aAbbreviations: dbEST, a database of expressed sequence tags; HG, the International Human Genome Project
draft assembly of the human genome; MSDB, a comprehensive, non-identical protein database; LC, liquid
chromatography; MS, mass spectrometry. Adapted from Ref. 15.
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on. However, there is a good chance that one of the redun-

dant sequences in dbEST contains the exact sequence being

sought, whereas the chance of the consensus sequence in

HG being correct falls off rapidly with the error density.

HG showed the largest number of matches missed

because there were higher scoring (though non-signifi-

cant) random matches. Although dbEST (2.3 Gbp) and

HG (3.3 Gbp) are similar in size, dbEST contains a much

greater degree of redundancy. In other words, a richer

variety of random sequences can be found in HG.

Besides the degree of redundancy, the other factor that

affects the scoring distribution for random matches is the

absolute size of the database. In silico digestion of the six-

frame translation of HG produces some 1.5 × 105 tryptic

limit peptides of mass 1500 Da ± 0.5. Without the con-

straint of tryptic cleavage, this number increases to

6 × 107. Allowing for the possibility of non-quantitative

post-translational modifications further increases the size

of the search space, with a geometric dependence on the

number of different modifications.

Taking the no-enzyme case, it becomes impossible to get

a significant match to a peptide shorter than seven residues,

because any given sequence of this length can be expected

to occur by chance (there are nominally 206 = 6.4 × 107

possible six residue peptides).With longer peptides, a signif-

icant match is possible only when the spectrum contains suf-

ficient information.The availability of multiple fragmentation

pathways, finite mass measurement uncertainty, the mass

degeneracy of certain residues and combinations of

residues, and many other factors mean that an MS–MS spec-

trum is rarely, if ever, an unambiguous representation of a

unique sequence. Hence, peptides usually need to be signif-

icantly longer than the minimum to get a positive match.

The remaining factor causing a significant loss of

matches in the HG search was exon boundary crossing.

The average size of a human exon is approximately

200 bp or 65 residues21. Taking 15 residues as a repre-

sentative peptide length, the average probability of a

randomly chosen peptide spanning an exon or intron

boundary is approximately 0.23, in close agreement with

the observed loss of 19 matches.

Result presentation and evaluation
The standard report formats of programs such as Mascot

were designed for searches of databases comprising rela-

tively short sequences12. The top-level report is a tabular

summary of the peptide matches, grouped by protein. For

each protein, there is a link to a second-level report (the

‘protein view’), showing the matches for that particular

protein or EST as highlights on the complete sequence, and

also as highlighted entries in a table of the predicted proteo-

lytic peptides. In the case of a nucleic acid sequence, there

will often be frame shifts, necessitating multiple protein

views, one for each frame in which matches were found.

Figure 3. Peptide
match results
displayed in a
genome browser

Peptide matches to
heterogeneous nuclear
ribonucleoprotein A2/B1
(gene hnRPA2B1) are
displayed using Artemis, a
Java-based genome browser
developed by the Sanger
Centre, Cambridge, UK.
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Such reports become unwieldy with very long

sequences, where the need is for graphical tools, capable

of zooming and panning around the sequence to investi-

gate the spatial distribution of peptide matches. We have

adopted Artemis22, a Java-based genome browser devel-

oped by the Sanger Centre (Cambridge, UK), as a tool for

reviewing the results from searching MS–MS data. To

transfer Mascot results into Artemis, the standard report

script was modified to write out peptide match data in

the format of an EMBL or GenBank feature table23,24.

Figure 3 shows matches from a search of HG to coding

sequences of the hnRPA2B1 gene, which has two splicing

patterns giving rise to the A2 and B1 isoforms of hetero-

geneous nuclear ribonucleoprotein15. The upper panel of

the Artemis window provides an overview. This can be

zoomed out to show the entire genome as a single strip.

In the centre are strips representing the sense and antisense

DNA strands above and below, which are strips representing

the six-frame translations.The vertical bars are stop codons.

Exons from the feature table are shown as light blocks on

the DNA strips, and the corresponding coding sequences are

marked on the protein strips. Individual peptide matches are

shown as small, dark blocks within the coding sequences.

Below this panel is a similar arrangement, but at higher

resolution. This portion of the display has been zoomed

to the point at which individual bases and residues can be

seen. Finally, the lower panel of the Artemis window

shows a tabular view of the feature table. When a match

is selected, it is highlighted in all three views, making it

possible to see detail such as the spectrum number,

sequence, molecular weight, and Mascot score.

Concluding remarks
The HG assembly remains a draft, and contains artefacts

that will be corrected over the coming months as it is

refined and annotated. MS can play an important role in

this process, providing experimental verification of pre-

dicted coding sequences and assisting in the identification

of novel features. Matching MS–MS data is a more laborious

method of gene mining than purely computational methods,

such as sequence alignment or exon prediction, but it has

the advantage of being an experimentally-based orthog-

onal approach, capable of finding truly novel genes.

Bioinformatic tools for high-throughput work are in

development, but much work remains to be done before

we can extract and utilize all of the information encoded

in raw MS data. Like the genome, the current generation

of software could also be regarded as work in progress.
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