
Very large searches present a number of challenges. These are the topics we will cover during this presentation.

|                                                                             | ۲                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Mascot Daemon                                                                                                                                  |                |
|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| • Can use<br>Mascot<br>Daemon to<br>process and<br>merge MudPIT             | Ele Edit Help<br>Status   Event Log Task Estor   Pa<br>Owner<br>Parameter set<br>  human<br>Oata file list                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Task<br>Munungous search New<br>Data import filter<br>Istacord Datalar  Schedule                                                               | Run<br>Options |
| fractions<br>• Use Distiller or<br>a file specific<br>data import<br>filter | Drog and flore data Blen in<br>before or clink on Add<br>4 Gample TUD 06222014, sa<br>4 Gample TUD 0622014, sa<br>4 Gample TUD 0620014, sa<br>4 G | C Start at     TSeptember2014     C Real-Sene monitor     C Follow-up     C Follow-up     C Follow-up     Auto-export     Auto-export     Lose |                |

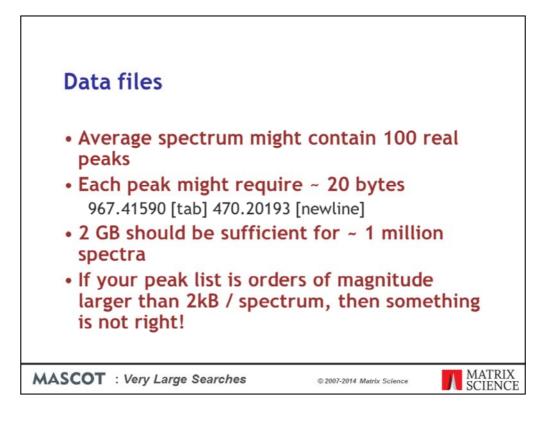
The smartest way to merge files, like fractions from a MudPIT run, is using Mascot Daemon. Just tick the box at the bottom left.

The batch can be peak lists or raw files

Note that Mascot Daemon 2.1 had a file size limit of 2 GB. This was lifted in 2.2, and we have successfully merged and searched a 6 GB file, although note that some web servers cannot accept uploads larger than 4 GB

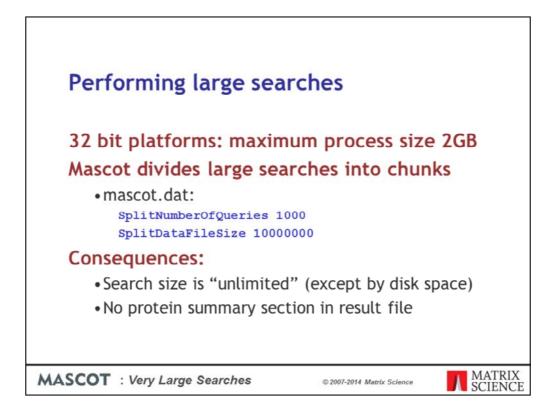


If you don't want to use Daemon, you can merge peak lists manually.


For DTA or PKL, you can download a script from our web site.

A nice feature of this script is that it puts the filename into the scan title, so you can tell which fraction a particular spectrum came from. The scan titles are displayed in the yellow pop-ups on the Mascot result report

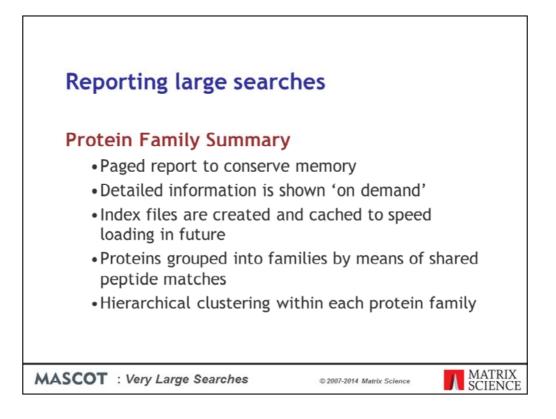
| Data files                  |                                                 |
|-----------------------------|-------------------------------------------------|
| •MGF                        | k lists:                                        |
| Windows: copy               | C:\TEMP>copy *.ngf merge.out                    |
| Unix: cat                   | <pre></pre>                                     |
| MASCOT : Very Large Searche | es © 2007-2014 Matrix Science MATRIX<br>SCIENCE |


As long as MGF files contain only peak lists, you don't need a script. Just use copy or cat

If the MGF files have search parameters at the beginning, you'll need to remove these before merging the files. Because a number of third party utilities add commands to MGF headers, and these cause a merged search to fail, Mascot Daemon 2.3 and later strips out header lines when merging MGF files.



In talking to Mascot users, it is clear that peak lists files are often much bigger than they should be. In other words, the peak detection is not very good. If you do a back of the envelope calculation, you can see that 2 GB should be enough for approximately 1 million spectra.


If you intend to do a lot of large searches, its worth getting the peak detection right. Shipping unnecessarily large files around wastes both time and disk space



32 bit platforms have a maximum process size of 2 GB on Windows or 3Gb on Linux. To get around this limit, Mascot divides large searches into smaller chunks, so as to avoid having everything in memory at the same time. The parameters to control this are SplitNumberOfQueries and SplitDataFileSize in the Options section of mascot.dat

One consequence of splitting a search is that there is no protein summary section in the result file. This is not a problem, because no-one wants a protein summary report for a large MS/MS search. However, some old client software gets confused by the missing section. The work around is to increase the values so that large searches never split. Maybe setting SplitNumberOfQueries to 1 million spectra and SplitDataFileSize to 10 billion bytes.

This is OK, but remember to reset these values as soon as you are able to. Otherwise, you might find you run out of memory or address space for your large searches



In early versions of Mascot, trying to display result reports for very large searches would often lead to problems with timeouts and running out of memory. To address this, the Protein Family Summary loads most of the information 'on demand'. This requires some index files to be created on the server, and these index files are cached, so that the report loads much faster on the second and subsequent occasions. Proteins are grouped into families by means of shared peptide matches and, within each family, hierarchical clustering is used to illustrate which proteins are closely related and which are more distant.

| C 54.243.190.62/m       | nascot/cgi/master_results_2.pl?file=_% | 2Fdata%2F | F981139.dat                                                                                                                                   |       |
|-------------------------|----------------------------------------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------|-------|
| eins (479) Report Build | fer Unassigned (27741)                 |           |                                                                                                                                               | 5.pem |
| ein families 1-10 (o    | ut of 479)                             |           |                                                                                                                                               |       |
|                         | 1 2 9 - 10 Next Expand al              | Collapse  |                                                                                                                                               |       |
|                         |                                        | Compt     |                                                                                                                                               |       |
| sion • contains •       |                                        |           | Find                                                                                                                                          |       |
|                         | 1::sp[TRY1_BOVIN]                      | 1606      | sp[TRV1_BOV3N]                                                                                                                                |       |
|                         | 1 2::CP2CT_MOUSE                       | 1337      | Cytochrome P450 2C29 OS=Mus musculus GN=Cyp2c29 PE=1 SV=2                                                                                     |       |
|                         | 6 2::CP239_MOUSE                       | 252       | Cytechrome P450 2C39 OS=Mus musculus GN=Cyp2c39 PE=2 SV=2                                                                                     |       |
|                         | 7 2::CP238_MOUSE                       | 150       | Cytochrome P450 2C38 OS+Mus musculus GN+Cyp2c38 PE+2 SV+2                                                                                     |       |
|                         | 2 2::CP254_MOUSE<br>8 2::CP270_MOUSE   | 553<br>73 | Cytochrome P450 2C54 OS=Mus musculus ON=Cyp2c54 PE=2 SV=1<br>Cytochrome P450 2C70 OS=Mus musculus ON=Cyp2c70 PE=2 SV=2                        |       |
|                         | 3 2::CY250_MOUSE                       | 490       | Cytochrame P450 2C50 OS=Mus musculus GN=Cyp2c50 PE=1 SV=2                                                                                     |       |
| _                       | 5 2::CP237_MOUSE                       | 339       | Cytochrame P450 2C37 OS=Mus musculus GN=Cyp2c37 PE=2 SV=2                                                                                     |       |
|                         | 4 2::CP2F2_MOUSE                       | 485       | Cytochrome P450 2F2 OS+Mus musculus GN=Cyp2f2 PE=2 SV=1                                                                                       |       |
|                         |                                        |           |                                                                                                                                               |       |
| 200                     | 0                                      |           |                                                                                                                                               |       |
|                         |                                        | 1200      |                                                                                                                                               |       |
| -                       | 1 2::GRP78_MOUSE<br>2 2::HSP7C_MOUSE   | 362       | 70 kDa glucose-regulated protein OS=Mus musculus GN=Hspa5 PE=1 SV=3<br>Heat shock cognate 71 kDa protein OS=Mus musculus GN=Hspa8 PE=1 SV=1   |       |
| L                       | 3 2::HS71L_MOUSE                       | 188       | Heat shock 70 kDa protein 1-like OS+Mus musculus ON+Hapa1I PE+2 SV+4                                                                          |       |
|                         |                                        |           |                                                                                                                                               |       |
| <u> </u>                | z •                                    |           |                                                                                                                                               |       |
|                         | 2::CYB5_MOUSE                          | 1217      | Cytochrome b5 OS=Mus musculus ON=Cyb5a PE=1 SV=2                                                                                              |       |
|                         | 2::PDIA1_MOUSE                         | 1124      | Protein disulfide-isomerase OS=Mus musculus ON=P4hb PE=1 SV=2                                                                                 |       |
|                         | 2::CP1A2 MOUSE                         | 1054      | Cytochrome P450 1A2 OS+Mus musculus GN+Cyp1a2 PE+1 SV+1                                                                                       |       |
|                         | 2::ENPL_MOUSE                          | 1018      | Endoplasmin OS=Mus musculus ON=Hsp90b1 PE=1 SV=2                                                                                              |       |
|                         |                                        |           |                                                                                                                                               |       |
| -                       | 1 2::RDH7_MOUSE<br>2 2::H1786_MOUSE    |           | Retinol dehydrogenase 7 OS+Mus musculus ON+Rdh7 PE+2 SV+1<br>17-beta-hydroxysterold dehydrogenase type 6 OS+Mus musculus ON+Hud1765 PE+2 SV+1 |       |
| 11111                   | T Introduction                         | 200       |                                                                                                                                               |       |
|                         |                                        |           |                                                                                                                                               |       |
| ਬੰ ਸੱ ਵੱ ਸੱ ਸੱ          | ਜੋ ਛੋ                                  |           |                                                                                                                                               |       |
|                         | 2::MGST1_MOUSE                         | 863       | Microsomal glutathione S-transferase 1 OS+Mus musculus GN+Mgst1 PE+1 SV+3                                                                     |       |
|                         | 2::RL7A_MOUSE                          | 770       | 605 ribosomal protein L7a OS=Mus musculus GN=Ral7a PE=2 SV=2                                                                                  |       |
|                         |                                        |           |                                                                                                                                               |       |
|                         |                                        |           |                                                                                                                                               |       |

If there are 300 or more spectra, the Protein Family Summary is the default. This is the appearance of a typical family report immediately after loading. The body of the report consists of three tabs, one for protein families, one for Report Builder, and one for unassigned matches. The report is paged, with a default page size of 10 families. If you wish, you can choose to display a larger number of families on a single page.

Proteins are grouped into families using a novel hierarchical clustering algorithm. If the family contains a single member, the accession string, protein score and description are listed. If the family contains multiple members, the accessions, scores and descriptions are aligned with a dendrogram, which illustrates the degree of similarity between members.

The scores for the proteins in family 2 vary from 1337 down to 73. In the earlier Peptide Summary or Select Summary reports, these would have been at opposite ends of the report. It would have been difficult to recognise that these proteins belonged together, even though they have shared peptide matches and are all cytochrome P450.

|                                                          | 54.243.1                               | 90.62/mas                                    | cot/cgi/mas            | ter_results_           | 2.pl?file=_%2       | 2Fdata%  | 2FF9811         | 39.dat   | jgnoreionsscorebe       | low=0.05:_prefertaxonomy=0:_sigthreshold=0.05:percolate=i { | 2 6 | 1 |
|----------------------------------------------------------|----------------------------------------|----------------------------------------------|------------------------|------------------------|---------------------|----------|-----------------|----------|-------------------------|-------------------------------------------------------------|-----|---|
|                                                          |                                        |                                              |                        | ECP2CT_M               |                     |          |                 |          |                         | us GN+Cvp2c29 PE+1 SV+2                                     |     |   |
|                                                          |                                        |                                              |                        | ::CP239_M              |                     | 25       |                 |          |                         | us GN=Cyp2c39 PE=2 SV=2                                     |     |   |
| T I                                                      |                                        |                                              |                        | CP238_M                |                     | 13       |                 |          |                         | us GN+Cyp2c30 PE+2 SV+2<br>us GN+Cyp2c54 PE+2 SV+1          |     |   |
|                                                          |                                        | _                                            |                        | ::CY250 M              |                     | 41       |                 |          |                         | us GN+Cyp2c50 PE+1 SV+2                                     |     |   |
| 1                                                        |                                        |                                              |                        | ::CP237_M              |                     | 33       |                 |          |                         | us GN+Cyp2c37 PE+2 SV+2                                     |     |   |
| -                                                        |                                        |                                              | 4 2                    | CP2F2_M                | OUSE                | 41       | 4 Cytoch        | Irome P4 | 150 2F2 OS+Mus musculut | GN+Cyp2f2 PE+2 \$V+1                                        |     |   |
|                                                          | ă;                                     | 8                                            | •                      |                        |                     |          |                 |          |                         |                                                             |     |   |
| ٠                                                        |                                        |                                              | >                      |                        |                     |          |                 |          |                         |                                                             |     |   |
| T                                                        | hreshold (0):                          |                                              | Cut                    |                        |                     |          |                 |          |                         |                                                             |     |   |
|                                                          |                                        |                                              | Score                  | Mass                   |                     | Sequen   |                 | PAI      |                         |                                                             |     |   |
| 2.1                                                      | d2::CP2CT_                             |                                              | 1337                   | 61419                  | 76 (76)             | 13 (     | 2018 I          |          |                         | +Hus musculus GN=Cyp2c29 PE+1 SV=2                          |     |   |
| 2.2                                                      | #21:CP254_                             | MOUSE                                        | 552                    | 60887                  | 27 (27)             |          | 4-4             | 0.88 0   | Sytechrome P450 2C54 OS | Hus musculus GN=Cyp2c34 PE=2 SV=1                           |     |   |
| 2.3                                                      | #2::CY250_                             | MOUSE                                        | 489                    | 61128                  | 27 (27)             | 10 (     | 10)             | 1.20 0   | Cytochrome P455 2C50 OS | +Mus musculus GN=Cyp2c50 PE+1 SV+2                          |     |   |
| 2.4                                                      | #2::CP2F2_                             | MOUSE                                        | 484                    | 59267                  | 32 (32)             | 12 (     | 12)             | 2.11     | Cytachrome P450 2F2 05+ | Mus musculus QN=Cyp2f2 PE=2 SV=1                            |     |   |
| 2.5                                                      | #21:CP237_                             | MOUSE                                        | 339                    | 60590                  | 22 (22)             | 8        | (8)             | 0.89     | Cytechrome P450 2C37 OS | +Hus musculus GN+Cyp2c37 PE+2 SV+2                          |     |   |
| 2.6                                                      | #2::CP239_                             | MOUSE                                        | 251                    | 60856                  | 13 (13)             | 4        | (4)             | 0.37     | ytechrome P450 2C39 OS  | +Mus musculus GN+Cyp2c29 PE+2 SV+2                          |     |   |
| 6 2.7                                                    | #2::CP238_                             | MOUSE                                        | 150                    | 61356                  | 9 (9)               | 4        | (4)             | 0.37     | Cytechrome P450 2C38 OS | +Mus musculus GN=Cyp2c38 PE+2 SV=2                          |     |   |
| Redispla                                                 | All Non                                |                                              |                        |                        |                     |          |                 |          |                         |                                                             |     |   |
| Auto-f                                                   | <b>tide matches (</b><br>lit to window | 43 non-dup                                   |                        |                        |                     |          |                 |          |                         |                                                             |     |   |
| 12346                                                    | Y Dopes                                |                                              | Mr(expt)<br>1004.6178  |                        | Delta M<br>0.1095 0 |          | Expect<br>0.015 |          | 0 1 2 3 4 5 6 7         | R.MPTLEDR.T                                                 |     | ź |
|                                                          |                                        |                                              | 1005.7547              |                        |                     |          | 0.014           |          | 0                       | R.FSVQILR.N                                                 | 1   | Î |
| ef419                                                    |                                        |                                              | 1031.7808              |                        |                     |          | 0.049           |          |                         | VOREIDR.V                                                   |     |   |
|                                                          | 7 12                                   |                                              | 1560.7029              |                        |                     |          | 1.2e-05         |          | 0                       | K.NISQSETNESR.A                                             |     | ١ |
|                                                          |                                        | 521.3753                                     | 1040.7361              | 1040.5810              | 0.1551 0            | 22       | 0.031           |          |                         | R.FTLMTLR.N + Oxidation (M)                                 |     |   |
|                                                          | 4                                      |                                              | 1573.3479              | 1572.7654              | 0.5824 0            | 71       | 1.3e-05         |          |                         | K. EALVDHOEEFAOR. O                                         |     |   |
| £444                                                     |                                        |                                              |                        | 1050.5323              | 0.0453 0            | 35       | 0.0084          |          |                         | R.CLVEBLR.K                                                 |     |   |
| 18444<br>18446<br>18470                                  |                                        |                                              | 1050.5776              |                        |                     | 54       | 0.00019         |          |                         | R. ICAGEGLAR.M                                              |     |   |
| ದೆ 444<br>ದೆ 446<br>ದೆ 470<br>ದೆ 973                     | 5                                      | 526.2961                                     | 1050.5776              | 1078.5385              | 0.0964 0            |          |                 |          |                         |                                                             |     |   |
| 11444<br>11446<br>11470<br>11473<br>11554                | 5<br>1 <b>b</b> 3                      | 526.2961<br>540.3247                         |                        |                        |                     | 53       | 0.00034         |          |                         | K. YEOVTAR. V                                               |     |   |
| ದೆ 444<br>ದೆ 446<br>ದೆ 470<br>ದೆ 473<br>ದೆ 554<br>ದೆ 560 | 5<br>1 <b>)</b> 3<br>6 <b>)</b> 8      | 526.2961<br>540.3247<br>541.3848             | 1078.6349              | 1080.6059              | 0.1492 0            |          |                 | 11       |                         | R. YEOVTAR. V<br>B. OSFIMAER. I                             |     |   |
| ದೆ 444<br>ದೆ 446<br>ದೆ 470<br>ದೆ 473<br>ದೆ 554<br>ದೆ 560 | 5<br>L > 3<br>H > 8<br>S > 5<br>I > 5  | 526.2961<br>540.3247<br>541.3848<br>577.9297 | 1078.6349<br>1080.7551 | 1080.6059<br>1153.6045 | 0.1492 0            | 53<br>49 | 0.00034         | 11<br>11 |                         |                                                             |     |   |

If you are interested in family 2, then you click to expand it to show the details. Immediately under the dendrogram is a list of the proteins. The table of peptide matches is similar to that found in the other result reports. Duplicate matches to the same sequence are collapsed into a single row. The columns headed 1, 2, 3, etc. represent the proteins and contain a black square if the peptide is found in the protein. Some matches are shared, but each protein has some unique peptide matches, otherwise it would be dropped as a sub-set.

In this screen shot and the ones that follow, we've set an expect cut-off of 0.05 to simplify the picture by removing low scoring matches

|                            | 0 54.243                                | .190.62/mas |                                     | ter_results_  |                                  | 2Fdata%        |                   |        |               | ssscorebelow=0.05;_prefertaxonomy=0;_sigthreshold=0.05;percolate=1 $c_2^{(2)}$ | Ð   |
|----------------------------|-----------------------------------------|-------------|-------------------------------------|---------------|----------------------------------|----------------|-------------------|--------|---------------|--------------------------------------------------------------------------------|-----|
| -                          |                                         |             |                                     | HSP7C_M       |                                  |                |                   |        |               | protein OS+Mus musculus GN+Hspaß PE+1 SV+1                                     |     |
| L                          |                                         |             |                                     | ::HS711_M     |                                  |                |                   |        |               | -like OS+Mus musculus GN=Hspa11 PE=2 SV=4                                      |     |
| 4                          | 5 <u>8</u> =                            | 3 ¥ X       | •                                   |               |                                  |                |                   |        |               |                                                                                |     |
| Th                         | reshold (0):                            | 0           | Cut                                 |               |                                  |                |                   |        |               |                                                                                |     |
| 3.1                        | #2::GRP7                                | 8 MOUSE     | 5core<br>1308                       | Mass<br>81404 | Matches<br>55 (55)               | Sequen<br>21 ( |                   | 2.47 1 | to kDa gluces | r-regulated protein OS+Mus musculus GN+Hspa5 PE+1 SV+3                         |     |
| 3.2                        | #2::HSP7                                |             | 362                                 | 78937         | 21 (21)                          |                |                   |        |               | pate 71 kDa protein OS=Mus musculus GN=Hspaß PE=1 EV=1                         |     |
| 13.3                       | 2::H571                                 |             | 188                                 | 78552         | 13 (13)                          |                |                   |        |               | kDa protein 1-like OS+Mus musculus GN+Hspa11 PE+2 SV+4                         |     |
| Redispla                   |                                         |             |                                     |               |                                  |                |                   |        |               |                                                                                |     |
| 11460)<br>115924<br>116994 | 11                                      | 546.9979    | 1045.9413<br>1091.9813<br>1129.7232 | 1091.6430     | 0.3038 0<br>0.3383 0<br>0.1131 0 | 41             | 0.038             | 11     | 0             | R.NTWFTK.K<br>K.ITITNOK.G<br>R.LTFEEIER.M                                      |     |
| 6751                       |                                         |             | 1145.9377                           |               | 0.2641 0                         |                | 0.0061            |        | υ .           | R. OTLDEVER. A                                                                 |     |
| ef\$021                    |                                         |             | 1191.1306                           |               | 0.4581 0                         |                | 0.0028            |        |               | R.VMERFIZ.L                                                                    |     |
| ef 9451                    |                                         |             | 1205.7264                           |               | 0.0517 0                         |                | 5.5e-05<br>0.0038 |        | 0             | K.VLEDSDLK.K<br>K.ITITNDQNR.L                                                  |     |
| 1996                       |                                         |             | 1220.8737                           |               | 0.1872 0                         |                | 0.0001            |        |               | K.VCNPIITK.L                                                                   |     |
| af10031                    |                                         |             | 1835.4126                           |               | 0.5923 0                         |                | 0.0075            |        |               | K. STAODTILOGEDFDNR.M                                                          | . 1 |
| af11545                    | 1 C C C C C C C C C C C C C C C C C C C | 635.4900    | 1268.9654                           | 1268.6856     | 0.2799 0                         | 55             | 0.00058           | 11     |               | R. ETAEAYLOR. R                                                                | . 1 |
| #1194                      |                                         | 641.5476    | 1281.0806                           | 1200.7220     | 0.3586 0                         | 55             | 0.00015           | 11     | 0             | K.EIAEAYLOR.T                                                                  | . 1 |
| W18194                     |                                         |             | 1479.1791                           |               | 0.3455 1                         | 42             | 0.0011            |        |               | K. VYEOERPLTK. D                                                               | . 1 |
| #1819<br>#19454            |                                         |             | 1479.5652                           |               | 0.7316 1                         | 26             | 0.014             |        |               | K. VYEGERPLTK. D                                                               |     |
|                            |                                         |             | 2303.9974                           |               | 0.7344 1                         | 39             | 0.0053<br>3.2e-05 |        |               | K. KVTRAVYTVEAYENDAGR. Q<br>B. NELESYAYSLK. N                                  |     |
|                            |                                         |             | 1672.5930                           |               | 0.6699 1                         | 28             | 0.018             |        |               | R.MRETARAYLOR.R                                                                |     |
| #21054                     |                                         |             | 1709.8639                           |               |                                  | 66             | 2.1e-06           |        |               | R. ITPSYVAFTEOER. L                                                            |     |
| d22754                     |                                         |             |                                     |               | 0.2770 0                         | 57             | 1.78-05           |        |               | R. ITPSYVAFTPEGER, L                                                           |     |
|                            |                                         |             | 1710.1517                           |               |                                  |                |                   |        |               |                                                                                |     |

Moving down to family 3, the scale on the dendrogram is ions score, and HSP7C\_MOUSE and HS71L\_MOUSE join at a score of approximately 30. This represents the score of the significant matches that would have to be discarded in order to make one protein a sub-set of the other. These two proteins are much more similar to one other than to GRP78\_MOUSE, which has non-shared peptide matches with a total score of approximately 145. Note that, where there are multiple matches to the same peptide sequence, (ignoring charge state and modification state), it is the highest score for each sequence that is used.

Immediately under the dendrogram is a list of the proteins. In this example, because SwissProt has low redundancy, each family member is a single protein. In other cases, a family member will represent multiple same-set proteins. One of the proteins is chosen as the anchor protein, to be listed first, and the other same-set proteins are collapsed under a same-set heading. There is nothing special about the protein picked for the anchor position. You may have a preference for one according to taxonomy or description, but all proteins in a same-set group are indistinguishable on the basis of the peptide match evidence.

The table of peptide matches is similar to that found in the other result reports. Duplicate matches to the same sequence are collapsed into a single row. Click on the triangle to expand.

The black squares to the right show which peptides are found in which protein. To see the peptides that distinguish HSP7C\_MOUSE and HS71L\_MOUSE, clear the checkbox for GRP78\_MOUSE and choose Redisplay.

| , _                                                                                                                        |                                                                                                      |                                                                                                                   |                                                                                                      |                                                                                                          |                                                            |                                                                                                                 |                                                                                                                                                                                                                                                                                       | - |  |
|----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--|
|                                                                                                                            |                                                                                                      |                                                                                                                   | ::GRP78_M                                                                                            |                                                                                                          | 1308                                                       |                                                                                                                 | se-regulated protein OS=Mus musculus GN=HspaS PE=1 SV=3<br>Ignate 71 kDa protein OS=Mus musculus GN=HspaS PE=1 SV=1                                                                                                                                                                   |   |  |
|                                                                                                                            |                                                                                                      | 3 2                                                                                                               | HS71L_M                                                                                              |                                                                                                          | 188                                                        |                                                                                                                 | kDa protein 1-lika OS=Mus musculus ON=Hspa119E=2 SV=4                                                                                                                                                                                                                                 |   |  |
| 51                                                                                                                         | 8 8 8 8 8                                                                                            |                                                                                                                   |                                                                                                      |                                                                                                          |                                                            |                                                                                                                 |                                                                                                                                                                                                                                                                                       |   |  |
| <                                                                                                                          |                                                                                                      | •                                                                                                                 |                                                                                                      |                                                                                                          |                                                            |                                                                                                                 |                                                                                                                                                                                                                                                                                       |   |  |
| Thres                                                                                                                      | hold (0): 0                                                                                          | Cut                                                                                                               |                                                                                                      |                                                                                                          |                                                            |                                                                                                                 |                                                                                                                                                                                                                                                                                       |   |  |
| 3.1                                                                                                                        | 2::GRP78_MOUSE                                                                                       | Score<br>1308                                                                                                     | Mass<br>81404                                                                                        | Matches<br>55 (55)                                                                                       | Sequence<br>21 (21                                         |                                                                                                                 | 78 kDa glucese-regulated protein OS+Mus musculus GN+Hapa5 PE+1 SV+3                                                                                                                                                                                                                   |   |  |
|                                                                                                                            | 2::HSP7C_MOUSE                                                                                       | 362                                                                                                               | 78937                                                                                                | 21 (21)                                                                                                  | 8 (8                                                       |                                                                                                                 | Maat shock cognete 71 kDe protein OS=Mus musculus OK=Hspeß PE=1 SV=1                                                                                                                                                                                                                  |   |  |
|                                                                                                                            | 2::HS71L MOUSE                                                                                       | 188                                                                                                               |                                                                                                      | 13 (13)                                                                                                  | 4 (4                                                       |                                                                                                                 | Meat shock 70 kDa protein 1-like OS=Mus musculus GN=Hapa1I PE=2 SV=4                                                                                                                                                                                                                  |   |  |
|                                                                                                                            | All None                                                                                             |                                                                                                                   |                                                                                                      | 10 (10)                                                                                                  |                                                            | /                                                                                                               |                                                                                                                                                                                                                                                                                       |   |  |
| d2720 )<br>d5924 )<br>d7529<br>d7529<br>d7529<br>d7529<br>d71946 )<br>d25277<br>d26376<br>d26946<br>d26947<br>2 subsets an | 1 546.9979<br>573.9761<br>2 611.4441<br>1 612.8115<br>1 641.5476<br>607.4422<br>953.0936<br>650.1325 | 1091.9813<br>1145.9377<br>1220.8737<br>1835.4126<br>1281.0806<br>1819.3048<br>1904.1726<br>1947.3756<br>1947.4139 | 1145-6536<br>1220-6865<br>1834-8204<br>1280-7220<br>1818-8255<br>1903-3845<br>1947-0920<br>1947-0920 | 0.1363 0<br>0.3383 0<br>0.2041 0<br>0.1872 0<br>0.3586 0<br>0.4793 0<br>0.1881 0<br>0.2836 0<br>0.3218 0 | 41 0<br>38 0<br>60 0<br>35 0<br>55 0<br>55 3<br>84 1<br>37 | .00024 )1<br>0.0061 )1<br>0.0061 )1<br>0.0001 )1<br>0.0001 )1<br>1.00015 )1<br>20-05 )1<br>0.013 )1<br>0.013 )1 | <ul> <li>B. LIODAAR, N</li> <li>F. LITTNER, G</li> <li>B. OTLEPPER, A</li> <li>K. VUNDITFE, L</li> <li>K. STACOFILOGEDERS, M</li> <li>K. ELAZATUR, T</li> <li>R. ATAGETHLOGEDERS, L</li> <li>K. STREPSAMENTER, M</li> <li>B. IINEFFAALAINOLER</li> <li>B. IINEFFAALAINOLER</li> </ul> |   |  |
|                                                                                                                            |                                                                                                      | 2                                                                                                                 | ::CYB5_MO                                                                                            | USE                                                                                                      | 1217                                                       | Cytochrome I                                                                                                    | 5 OS+Nus musculus ON+Cyb5# RE=1 SV+2                                                                                                                                                                                                                                                  |   |  |
|                                                                                                                            |                                                                                                      | 2                                                                                                                 | PDIA1_M                                                                                              | OUSE                                                                                                     | 1123                                                       | Protein diauff                                                                                                  | de-isomerase OS+Mus musculus ON+P4Nb PE+1 SV+2                                                                                                                                                                                                                                        |   |  |
|                                                                                                                            |                                                                                                      | 2                                                                                                                 | CP1A2_M                                                                                              | OUSE                                                                                                     | 1054                                                       | Cytochrome I                                                                                                    | 450 1A2 05=Mus musculus GN=Cyp1a2 PE=1 3V=1                                                                                                                                                                                                                                           |   |  |
|                                                                                                                            |                                                                                                      |                                                                                                                   | ENPL_MO                                                                                              |                                                                                                          |                                                            | and the second                                                                                                  | 05-Mus musculus GN-Hap9001 #E-1 SV-2                                                                                                                                                                                                                                                  |   |  |

It can now be seen that HS71L\_MOUSE would be a sub-set of HSP7C\_MOUSE if it was not for one match, K.ATAGDTHLGGEDFDNR.L. It is the significant score for this match that separates the two proteins in the dendrogram by a distance of 32 (score of 55 - homology threshold score of 23).

You can "cut" the dendrogram using the slider control.

|            |            |                |             | GRP78_M   | OHEE      |        |         |      |          | ted protein OS+Mus musculus GN+Hzpa5 9E+1 SV+3                | 9   |
|------------|------------|----------------|-------------|-----------|-----------|--------|---------|------|----------|---------------------------------------------------------------|-----|
| 1          |            |                |             | HSP7C_M   |           |        |         |      |          | LLDa protain OS+Mus musculus GN+Hspaß PE+1 SV+1               |     |
|            |            |                | -           |           |           |        |         |      |          |                                                               |     |
|            |            |                |             |           |           |        |         |      |          |                                                               |     |
|            | 5 8 B      | 8 8 8          |             |           |           |        |         |      |          |                                                               |     |
|            |            | _              |             |           |           |        |         |      |          |                                                               |     |
| 4          |            |                |             |           |           |        |         |      |          |                                                               |     |
| Thr        | eshold (50 | ): 50          | Cut         |           |           |        |         |      |          |                                                               |     |
|            |            |                |             |           |           |        |         |      |          |                                                               |     |
|            | -          | a manuer       | Score       | Mass      |           | Sequen |         | PAI  |          |                                                               |     |
| 3.1        | d2::GRP7   |                | 1308        | 81404     | 55 (55)   |        | 1008    |      |          | plucese-regulated protein OS=Mus musculus GN=Hapa5 PE=1 SV=3  |     |
| 3.2        | 821:HSP7   | C_MOUSE        | 362         | 78937     | 21 (21)   |        | (8)     | 0.63 | Heat sho | ick cognate 71 kDa protein OS=Mus musculus ON=Hspaß PE=1 SV=1 |     |
| Redisplay  | All No     | anie .         |             |           |           |        |         |      |          |                                                               |     |
|            |            |                |             |           |           |        |         |      |          |                                                               |     |
| ió peptide | e matches  | (32 non-duplic | ate, 34 dup | licate)   |           |        |         |      |          |                                                               |     |
| Auto-fit   | to window  |                |             |           |           |        |         |      |          |                                                               |     |
| Query      | Dupes      | Observed       | Mr(expt)    | Mr(calc)  | Delta M   | Score  | Expect  | Rank | 01       | 2 Peptide                                                     |     |
| #2720      |            | 488.3756       | 974.7367    | 974.6004  | 0.1363 0  | 54     | 0.00024 |      | ÷ 🕯      | R.LIGDAAR.N                                                   |     |
| #4601      | 12         | 523.9779       | 1045.9413   | 1045.6375 | 0.3038 0  | 33     | 0.038   | 11   | U .      | R.NTWFTK.K                                                    |     |
| 15924      | 11         | 546.9979       | 1091.9813   | 1091.6430 | 0.3383 0  | 41     | 0.0061  | 11   |          | K.ITITNDK.G                                                   | - 1 |
| ef6224     |            | 545.8689       | 1129.7232   | 1129.6101 | 0.1131 0  | 32     | 0.927   | 11   |          | R.LTPEEIER.H                                                  | - 1 |
| 17519      |            | 573.9761       | 1145.9377   | 1145.6536 | 0,2041.0  | 38     | 0.0061  | 11   | σ        | R.OTLDEVER.A                                                  | - 1 |
| #9021      |            | 596.5726       | 1191.1306   | 1190.6725 | 0.4581 0  | 45     | 0.0028  | 11   | Ψ.       | R. WEHFIR. L                                                  | - 1 |
| 19459      | 12         | 603.8705       | 1205.7264   | 1205.6747 | 0.0517 0  | 61     | 5.5e-05 | 11   | υ .      | K.VLEDSDLK.K                                                  |     |
| 19857      | 13         | 609.9429       | 1217.0713   | 1217.6486 | 0.2227 0  | 45     | 0.0036  | 11   | υ 🔳      | K. ITITNDQNR. L                                               |     |
| deeth      | 12         | 611.4441       | 1220.0737   | 1220.6865 | 0.1872 0  | 60     | 0.0001  | ¥1   | U        | R.VCNPIITE.L                                                  |     |
| ef10037    | 11         | 612.0115       | 1035.4126   | 1834.8204 | 0.5923 0  | 35     | 0.0075  | 11   |          | K. STAODTHLOGEDFONR . N                                       |     |
| 111545     |            | 635.4900       | 1268.9654   | 1268.6856 | 0.2799 0  | 55     | 0.00058 | 11   | υ .      | K.ETABAYLOK.K                                                 | - 1 |
| af11946    | 11         | 641.5476       | 1281.0806   | 1280.7220 | 0.3586 0  | 55     | 0.00015 | 11   | U        | K.EIAEAYLOR.T                                                 | . 1 |
| #18194     |            | 740.5968       | 1479.1791   | 1478,8336 | 0.3455 1  | 42     | 0.0011  | 11   | υ 🔳      | K. VYBOERPLTK. D                                              | . 1 |
| 10197      |            | 494.1997       | 1479.5652   | 1478.0336 | 0.7316 1  | 26     | 0.914   | 11   | υ .      | K. VYBGBRFLTK. D                                              |     |
| 19656      |            | 769.0064       |             |           | 0.7344 1  | 39     | 0.0053  | 11   | 0 🔳      | R. RYTHAVYTVIAYPHDAQR. Q                                      |     |
| 821354     | 11         | 803.1397       |             |           | 0.4311 0  | 63     | 3.2e-05 | 11   | υ .      | R. NELESYAYSLE. N                                             |     |
| \$22784    |            | 558.5383       | 1672.5930   | 1671-9231 | 0.6699 1  | 28     | 0.018   | 11   |          | R. MRETARAYLOR. R                                             |     |
| 123465     | >2         | 055.9392       | 1709.8639   | 1709.8746 | -0.0108 0 | 66     | 2.1e-06 | 11   | υ.       | R. ITPSYVAFTPEGER. L                                          | - 1 |
| 122472     |            | 571.0578       | 1710.1517   | 1709.8746 | 0.2770 0  | 57     | 1.7e-05 | 11   | υ 🔳      | R. ITPSYVAFTPEGER. L                                          |     |
| DA1112     |            |                |             | 1717.8879 | -0.5253 0 | 77     | 9.4e-07 |      |          | R. THERPSVOQDIK.F                                             |     |

If we cut the dendrogram at a score of 50, HS71L\_MOUSE will be dropped because it is now a sub-set protein. If you compare the matches to HSP7C\_MOUSE with those to GRP78\_MOUSE, it is clear that these are very different proteins. They are part of the same family because of two shared matches, but many highly significant matches would have to be discarded for either protein to become a sub-set of the other. In summary, we can quickly deduce from the Family Summary that there is abundant evidence that both GRP78\_MOUSE and HSP7C\_MOUSE were present in the sample. There is little evidence for HS71L\_MOUSE. It is more likely that the HSP7C\_MOUSE contained a SNP or two relative to the database sequence.

|              | H48) Report 8 | Sullder Unassig                    | med (30397)   | 7                 |           |               |           |       | 5 permalio                                                 |
|--------------|---------------|------------------------------------|---------------|-------------------|-----------|---------------|-----------|-------|------------------------------------------------------------|
| Inotain fa   |               | 11                                 |               |                   |           |               |           |       |                                                            |
| rotem ia     | milies 41-5   | 0 (out of 448)                     | 1             |                   |           |               |           |       |                                                            |
| 10 • per j   | page Etexio   | SIS 1 2 2 4 5                      | Q Z B         | 2 12 - 4          | Next      | E             | xpand     | all   | Collapse all                                               |
| Sequence     | is equal to   | MNVLADALK                          |               |                   |           | Find          | Clea      | a     |                                                            |
|              |               |                                    |               |                   |           | -) CONTRACTOR | ALCONT OF |       |                                                            |
| 41           | 2::NB5R3_MO   | JSE 36                             | 54 NADH-cyto  | chrome b5 reduc   | tase 3 OS | +Mus musc     | ulus GN   | +Cyb  | 5/3 PE+1 SV+3                                              |
| 42           | 2::RS19_MOUS  | SE 30                              | 50 405 ribese | mal protain 519   | 05+Mus n  | usculus GN    | + F.p.13  | - 25  | 1 5/+3                                                     |
| 43           | 2::CP2E1_MOL  | ISE 35                             | SB Cytechreen | + P455 2E1 05+    | Hus musc  | Aut Ghancy    | 241 PE    | -2.5  | V=1                                                        |
|              | 2::RL22_MOUS  |                                    |               | mal protein L22 ( |           |               |           |       |                                                            |
|              |               |                                    |               |                   |           |               |           |       |                                                            |
| 45           | 2::RS15A_MOL  |                                    |               | mal protein \$15a |           |               |           | 28 PI | E#1 34#5                                                   |
| 45.1         | 2::RS15A_MOL  | JSE 344                            | Mass<br>16651 | Matches : 16 (16) | Sequen    |               | 2.12      | 105 r | bosomal protein 515a OS+Mus musculus Olix=Rps15a PE+1 SV+2 |
| 10020-000000 |               |                                    |               |                   |           |               |           |       |                                                            |
|              |               | -duplicate, 12 dupl                | icate)        |                   |           |               |           |       |                                                            |
| Auto-fit     | to window     |                                    |               |                   |           |               |           |       |                                                            |
| Query 1      |               | erved Mr(expt)                     |               | Delta M           |           |               |           |       | Peptide                                                    |
| #13708       |               | .3777 1014.7407                    |               | 0.1100 0          | 45        | 0.00053       |           |       | K. IVVNLTGR. L                                             |
| ef11285 -    |               | .9663 1261.9180<br>.8868 1261.7591 |               | 0.1872 0          | 77        | 2.4e-06       |           |       | R. MIVLADALK . S<br>R. FOVLADALK . S                       |
|              |               | .8914 1261.7682                    |               | 0.0375 0          | (59)      | 9.7e-05       |           |       | R. MINVLADALM . S                                          |
|              |               | .9416 1261.8686                    |               | 0.1379 0          | (59)      | 0.00013       |           |       | R. HNVLADALK . S                                           |
|              | d11207 #32    | .0080 1262.0014                    | 1241.7308     | 0.2704 0          | (4.2)     | 0.0045        | 1:        |       | R MONTADALK S                                              |
|              | 632           | .0218 1262.0291                    | 1261.7308     | 0.2983 0          | (63)      | 6.4e-05       | 11        | σ     | R. NNVLADALK . S                                           |
| W11604       |               | .4751 1270.9355                    |               | 0.2452 0          | 28        | 0.03          |           |       | K.WOMNLLPSR.Q                                              |
| #11780 ·     |               | .8954 1277.7762                    |               | 0.0505 0          | 50        | 0.00084       |           |       | R. MNVLADALE.S - Oxidation (M)                             |
|              | #11/79 #J9    | 19899 1211.9862                    | 1211.1251     | 0.2396 0          | (40)      | 0.00054       | 11        |       | R. HNVLADALR. S + Omidation (M)                            |

The family report also includes a text search facility, which is particularly important for a paged report. You can search by accession or description sub-string, or by query, mass or sequence. Here, for example, we searched for a peptide sequence. The display jumps to the first instance of the sequence, expands, and highlights (in green) the target peptides.

|          |       | 49) Rep                | ort Builder Unassign              | ed (3039)  | 2           |           |                  |           |          |      | <u>&amp; permaliok</u>                                                                                               |
|----------|-------|------------------------|-----------------------------------|------------|-------------|-----------|------------------|-----------|----------|------|----------------------------------------------------------------------------------------------------------------------|
| roteir   | ı hi  | ts (476 p              | proteins)                         |            |             |           |                  |           |          |      |                                                                                                                      |
|          |       |                        | 12 out of 16)                     |            |             |           |                  |           |          |      |                                                                                                                      |
|          |       |                        |                                   |            |             |           |                  |           |          |      |                                                                                                                      |
| Filters: | : (no | me)                    |                                   |            |             |           |                  |           |          |      |                                                                                                                      |
| xport as | CSI   | $E_{\pm}$              |                                   |            |             |           |                  |           |          |      |                                                                                                                      |
| amily    | 1     | me                     | Accession                         | Score      |             | I Matcher | Match(sig)       | Enminent  | Contrint |      | Description                                                                                                          |
| anning   | 1     | CRAP                   | #1::sp[TRY1_BOVIN]                | 1606       | 28266       | 48        | Hatch(sig)<br>48 | 3equences | Sequing  | 2.86 |                                                                                                                      |
|          | 1     | SwissProt              | d2::CP2CT_MOUSE                   | 1337       | 61419       | 76        | 76               | 13        | 13       | 2.00 | Cytochrome P450 2C29 05=Mus musculus GN=Cyp2c29 PE=1                                                                 |
|          | 2     | SwissProt              | #2::CP254_MOUSE                   | 552        | 60887       | 27        | 27               | 8         | 8        | 0.88 | Cytochrome P450 2C54 OS=Mus musculus GN=Cyp2c54 PE=2                                                                 |
|          | 6     | SwissProt              | #2::CY250_MOUSE                   | 489        | 61128       | 27        | 27               | 10        | 10       | 1.20 | Cytochrome P450 2C50 OS=Mus musculus GN=Cyp2c50 PE=1                                                                 |
|          | 4     | SwissProt              | 2::CP2F2 MOUSE                    | 484        | 59267       | 32        | 32               | 12        | 12       | 2.11 | Cytochrome P450 2F2 OS=Mus musculus GN=Cyp2f2 PE=2 SV                                                                |
|          | 5     | SwissProt              | #2::CP237_MOUSE                   | 339        | 60590       | 22        | 22               | 8         | 8        | 0.89 | Cytochrome P450 2C37 OS=Mus musculus GN=Cyp2c37 PE=2                                                                 |
|          | 6     | SwissProt              | #2::CP239_MOUSE                   | 251        | 60856       | 13        | 13               | 4         | 4        | 0.37 | Cytochrome P450 2C39 OS=Mus musculus GN=Cyp2c39 PE=2                                                                 |
|          | 7     | SwissProt              | #2::CP238_MOUSE                   | 150        | 61356       | 9         | 9                | 4         | 4        | 0.37 | Cytochrome P450 2C38 OS=Mus musculus GN=Cyp2c38 PE=2                                                                 |
|          | 1     | SwissProt              | #2::GRP78_MOUSE                   | 1308       | 81404       | 55        | 55               | 21        | 21       | 2.47 | 78 kDa glucose-regulated protein OS=Mus musculus GN=Hspa                                                             |
|          | 2     | SwissProt              | #2::HSP7C_MOUSE                   | 362        | 78937       | 21        | 21               | 8         | 8        | 0.63 | Heat shock cognate 71 kDa protein OS=Mus musculus GN=Hs                                                              |
|          | 1     | SwissProt              | #2::CYBS_MOUSE                    | 1217       | 16817       | 42        | 42               | 5         | 5        | 3.08 | Cytochrome b5 OS=Mus musculus GN=Cyb5a PE=1 SV=2                                                                     |
|          | 1     | SwissProt              | #2::PDIA1_MOUSE                   | 1123       | 64694       | 53        | 53               | 16        | 16       | 2.54 | Protein disulfide-isomerase OS=Mus musculus GN=P4hb PE=1                                                             |
|          | 1     | SwissProt              | #2::CP1A2_MOUSE                   | 1054       | 63034       | 38        | 38               | 10        | 10       | 1.31 | Cytochrome P450 1A2 OS=Mus musculus GN=Cyp1a2 PE=1 S                                                                 |
|          | 1     | SwissProt              | #2::ENPL_MOUSE                    | 1018       | 103744      | 63        | 63               | 10        | 19       | 1.53 | Endoplasmin OS=Mus musculus GN=Hsp90b1 PE=1 SV=2                                                                     |
|          | 1     | SwissProt              | #2::RDH7_MOUSE                    | 1005       | 38455       | 45        | 45               | 12        | 12       | 4.07 | Retinol dehydrogenase 7 OS=Mus musculus GN=Rdh7 PE=2 S                                                               |
|          | 2     | SwissProt              | #2::H1786_MOUSE                   | 597        | 38949       | 23        | 23               | 7         | 7        | 1.37 | 17-beta-hydroxysteroid dehydrogenase type 6 OS=Mus muscu                                                             |
|          | 1     | SwissProt              | #2::MGST1_MOUSE                   | 863        | 18595       | 25        | 25               | 3         | 3        | 2.57 | Microsomal glutathione S-transferase 1 OS=Mus musculus GN                                                            |
|          | 1     | SwissProt              | #2::RL7A_MOUSE                    | 770        | 35860       | 28        | 28               | 8         | 8        | 1.91 | 60S ribosomal protein L7a OS=Mus musculus GN=Rpl7a PE=2                                                              |
|          | 1     | SwissProt              | #2::RLA0_MOUSE                    | 763        | 37215       | 24        | 24               | 7         | 7        | 1.47 | 60S acidic ribosomal protein P0 OS@Mus musculus GN@Rplp0                                                             |
|          | 1     | SwissProt              | #2::CP2AC_MOUSE                   | 763        | 61325       | 35        | 35               | 14        | 14       | 2.25 | Cytochrome P450 2A12 OS=Mus musculus GN=Cyp2a12 PE=1                                                                 |
|          | 2     | SwissProt              | #2::CP2A5_HOUSE                   | 59         | 61696       | 5         | 5                | 2         | 2        | 0.17 | Cytochrome P450 2A5 OS=Mus musculus GN=Cyp2a5 PE=2 5                                                                 |
|          | 1     | SwissProt              | #2::ACSL1_MOUSE                   | 749        | 86078       | 38<br>15  | 38<br>15         | 18        | 18       | 1.90 | Long-chain-fatty-acidCoA ligase 1 OS=Mus musculus GN=Ac                                                              |
|          | 2     | SwissProt<br>SwissProt | #2::ACSL5_MOUSE                   | 297<br>748 | 84629 28083 | 31        | 15               | 6         | 7        | 0.41 | Long-chain-fatty-acidCoA ligase 5 OS=Mus musculus GN=Ac                                                              |
|          | 1     | SwissProt              | #2::RL13_MOUSE<br>#2::PDIA3_MOUSE | 692        | 28083 64504 | 31<br>40  | 40               | 15        | 15       | 2.90 | 60S ribosomal protein L13 OS=Mus musculus GN=Rpl13 PE=2<br>Protein disulfide-isomerase A3 OS=Mus musculus GN=Pdia3 P |
|          | 1     | SwissProt              | #2::CP3AB_MOUSE                   | 686        | 65154       | 32        | 32               | 10        | 10       | 1.25 | Cytochrome P450 3A11 OS=Mus musculus GN=Cyp3a11 PE=1                                                                 |
|          | 1     | SwissProt              | 2::UDB17_MOUSE                    | 677        | 67040       | 34        | 34               | 9         | 9        | 0.91 | UDP-glucuronosyltransferase 2817 O5=Mus musculus GN=Ugt                                                              |
|          | 2     | SwissProt              | #2::UD11_MOUSE                    | 429        | 05301       | 19        | 19               | 7         | 7        | 0.80 | UDP-glucuronosyltransferase 1-1 OS=Mus musculus GN=Ugt1                                                              |
|          | 1     | SwissProt              | 2::UD16_MOUSE                     | 245        | 65516       | 14        | 14               | 6         | 6        | 0.67 | UDP-glucuronosyltransferase 1-6 OS=Mus musculus GN=Ugt1                                                              |
|          | li    | SwissProt              | 2::EST3A_MOUSE                    | 668        | 67490       | 28        | 28               | 5         | 5        | 0.43 | Carboxylesterase 3A OS=Mus musculus GN=Ces3a PE=1 SV=2                                                               |
|          | 1.    |                        |                                   | 1          |             |           |                  |           |          |      |                                                                                                                      |

The Report Builder tab is useful when you need a table of proteins suitable for publication. Lets assume we want to drop the 'one hit wonders' and only report proteins that have significant matches to at least 2 different peptide sequences

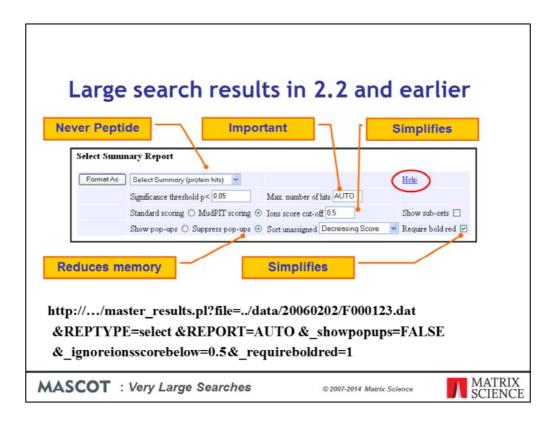
|       |      |                               |                                    | ed (3039) | 2           |          |            |           |          |       | <u>5 permalini</u>                                                                                             |
|-------|------|-------------------------------|------------------------------------|-----------|-------------|----------|------------|-----------|----------|-------|----------------------------------------------------------------------------------------------------------------|
|       | ı hi | ts (476 p                     | proteins)                          |           |             |          |            |           |          |       |                                                                                                                |
|       |      |                               | 12 out of 16)                      |           |             |          |            |           |          |       |                                                                                                                |
| ters  | (00  | one)                          |                                    |           |             |          |            |           |          |       |                                                                                                                |
|       | -    |                               | ant sequences                      |           | <u> </u>    | _        |            |           |          |       |                                                                                                                |
|       | P    | otein hits                    | am sequences                       |           | -           |          |            |           |          |       |                                                                                                                |
|       |      | Family<br>Member              |                                    |           | F           | iter     |            |           |          |       |                                                                                                                |
| rt as |      | Database                      |                                    |           |             |          |            |           |          |       |                                                                                                                |
| rt as | 1    | Accession<br>Score            |                                    |           |             |          |            |           |          |       |                                                                                                                |
| illy  | F    | Mass                          |                                    | Score     | Mass        | Matches  | Match(sig) | Sequences | Seq(sig) | emPAI | Description                                                                                                    |
|       | Π.   | Num of sign                   | ficant matches                     | 1606      | 28266       | 48       | 48         | 7         | 7        | 2.86  | sp[TRY1_BOVIN]                                                                                                 |
|       |      | Num of sequ                   | ences                              | 1337      | 61419       | 76       | 76         | 13        | 13       | 2.00  | Cytochrome P450 2C29 OS=Mus musculus GN=Cyp2c29 PE=                                                            |
|       |      | Num of sign                   | licent sequences                   | 552       | 60887       | 27       | 27         | 8         | 8        | 0.88  | Cytochrome P450 2C54 OS=Mus musculus GN=Cyp2c54 PE=                                                            |
|       |      | Num. of sign                  | ficant unique sequences            | 489       | 61128       | 27       | 27         | 10        | 10       | 1.20  | Cytochrome P450 2C50 OS=Mus musculus GN=Cyp2c50 PE=                                                            |
|       |      | emPAI<br>Sequence co          |                                    | 484       | 59267       | 32       | 32         | 12        | 12       | 2.11  | Cytochrome P450 2F2 OS=Mus musculus GN=Cyp2f2 PE=2 5                                                           |
|       |      | pl                            | ireraya III                        | 339       | 60590       | 22       | 22         | 8         | 8        | 0.89  | Cytochrome P450 2C37 OS=Mus musculus GN=Cyp2c37 PE=                                                            |
|       | l a  | Description                   |                                    | 251       | 60856       | 13       | 13         | 4         | 4        | 0.37  | Cytochrome P450 2C39 OS=Mus musculus GN=Cyp2c39 PE=<br>Cytochrome P450 2C38 OS=Mus musculus CN=Cyp2c39 PE=     |
|       |      | xed modifica<br>Methylthia (C |                                    | 150       | 61356       | 55       | 55         | 21        | 4        | 0.37  | Cytochrome P450 2C38 OS=Mus musculus GN=Cyp2c38 PE=<br>78 kDa glucose-regulated protein OS=Mus musculus GN=Hsp |
|       |      | ITRAQ4plex                    |                                    | 362       | 78937       | 21       | 21         | .8        | 8        | 0.63  | Heat shock cognate 71 kDa protein OS=Mus musculus GN=H                                                         |
|       | 1    | SwissProt                     | #2::CYBS_MOUSE                     | 1217      | 16817       | 42       | 42         | 5         | 5        | 3.08  | Cytochrome b5 OS=Mus musculus GN=Cyb5a PE=1 SV=2                                                               |
|       | 1    | SwissProt                     | 2::PDIA1_MOUSE                     | 1123      | 64694       | 53       | 53         | 16        | 16       | 2.54  | Protein disulfide-isomerase OS=Mus musculus GN=P4hb PE=                                                        |
|       | 1    | SwissProt                     | #2::CP1A2_MOUSE                    | 1054      | 63034       | 38       | 38         | 10        | 10       | 1.31  | Cytochrome P450 1A2 OS=Mus musculus GN=Cyp1a2 PE=1                                                             |
|       | 1    | SwissProt                     | #2::ENPL_MOUSE                     | 1018      | 103744      | 63       | 63         | 19        | 19       | 1.53  | Endoplasmin OS=Mus musculus GN=Hsp90b1 PE=1 SV=2                                                               |
|       | 1    | SwissProt                     | #2::RDH7_MOUSE                     | 1005      | 38455       | 45       | 45         | 12        | 12       | 4,07  | Retinol dehydrogenase 7 OS=Mus musculus GN=Rdh7 PE=2                                                           |
|       | 2    | SwissProt                     | #2::H1786_MOUSE                    | 597       | 38949       | 23       | 23         | 7         | 7        | 1.37  | 17-beta-hydroxysteroid dehydrogenase type 6 OS=Mus musi                                                        |
|       | 1    | SwissProt                     | #2::MGST1_MOUSE                    | 863       | 18595       | 25       | 25         | 3         | 3        | 2.57  | Microsomal glutathione S-transferase 1 OS=Mus musculus GI                                                      |
|       | 1    | SwissProt                     | #2::RL7A_MOUSE                     | 770       | 35860       | 28       | 28         | 8         | 8        | 1.91  | 60S ribosomal protein L7a OS=Mus musculus GN=RpI7a PE=                                                         |
|       | 1    | SwissProt<br>SwissProt        | #2::RLA0_MOUSE                     | 763       | 37215 61325 | 24<br>35 | 24<br>35   | 14        | 7        | 1.47  | 60S acidic ribosomal protein P0 OS=Mus musculus GN=Rplp0                                                       |
|       | 1    | SwissProt                     | #2::CP2AC_MOUSE<br>#2::CP2A5_MOUSE | 59        | 61696       | 35       | 35         | 14        | 14       | 2.25  | Cytochrome P450 2A12 OS=Mus musculus GN=Cyp2a12 PE=<br>Cytochrome P450 2A5 OS=Mus musculus GN=Cyp2a5 PE=2      |
|       | 1    | SwissProt                     | #2::ACSL1_MOUSE                    | 749       | 86078       | 38       | 38         | 18        | 18       | 1.90  | Long-chain-fatty-acidCoA ligase 1 OS=Mus musculus GN=A                                                         |
|       | 2    | SwissProt                     | #2::ACSL5_MOUSE                    | 297       | 84629       | 15       | 15         | 6         | 6        | 0.41  | Long-chain-fatty-acidCoA ligase 5 OS=Mus musculus GN=A                                                         |
|       | 1    | SwissProt                     | #2::RL13_MOUSE                     | 748       | 28083       | 31       | 31         | 7         | 7        | 2.90  | 605 ribosomal protein L13 OS=Mus musculus GN=Rpl13 PE=                                                         |
|       | 1    | SwissProt                     | #2::PDIA3_MOUSE                    | 692       | 64504       | 40       | 40         | 15        | 15       | 2.06  | Protein disulfide-isomerase A3 OS=Mus musculus GN=Pdia3                                                        |
|       | 1    | SwissProt                     | #2::CP3AB_MOUSE                    | 686       | 65154       | 32       | 32         | 10        | 10       | 1.25  | Cytochrome P450 3A11 OS=Mus musculus GN=Cyp3a11 PE=                                                            |
|       | 11   | SwissProt                     | #2::UDB17 MOUSE                    | 677       | 67040       | 34       | 34         | 9         | 9        | 0.91  | UDP-glucuronosyltransferase 2B17 OS=Mus musculus GN=U                                                          |

We open up the filters section and add a suitable filter.

| roteir<br><sup>Column</sup>             | n hi    |                             |                      |       |        |         |            |           |          |       | 5.permalink                                                 |
|-----------------------------------------|---------|-----------------------------|----------------------|-------|--------|---------|------------|-----------|----------|-------|-------------------------------------------------------------|
| Colum                                   |         | ts (229 )                   | proteins)            |       |        |         |            |           |          |       |                                                             |
|                                         |         | to the second second second | 12 000 01 10)        | _     |        |         |            |           |          |       |                                                             |
| liter                                   | 84-     | un of sign                  | ificant sequences" > | - 2   |        |         |            |           |          |       |                                                             |
| incers.                                 |         | in. or sign                 | incline sequences 2  |       | _      |         |            |           |          |       |                                                             |
| xport as                                | 1 C S V | 61                          |                      |       |        |         |            |           |          |       |                                                             |
| amily                                   | LM.     | DB                          | Accession            | Score | Mass   | Matches | Match(sig) | Sequences | Sea(sia) | emPAI | Description                                                 |
|                                         | 1       | CRAP                        | #1::spiTRY1_BOVINI   | 1606  | 28266  | 48      | 48         | 7         | 7        | 2.86  | SPITRY1_BOVINI                                              |
|                                         | li      | SwissProt                   | #2::CP2CT_MOUSE      | 1337  | 61419  | 76      | 76         | 13        | 13       | 2.00  | Cytochrome P450 2C29 OS=Mus musculus GN=Cyp2c29 PE=1 5      |
|                                         | 2       | SwissProt                   | 2::CP254 MOUSE       | 552   | 60887  | 27      | 27         | 8         | 8        | 0.68  | Cytochrome P450 2C54 OS=Mus musculus GN=Cyp2c54 PE=2 Si     |
|                                         | 5       | SwissProt                   | #2::CY250_MOUSE      | 489   | 61128  | 27      | 27         | 10        | 10       | 1.20  | Cytochrome P450 2C50 QS=Mus musculus GN=Cyp2c50 PE=1 S      |
|                                         | 4       | SwissProt                   | 2::CP2F2 MOUSE       | 484   | 59267  | 32      | 32         | 12        | 12       | 2.11  | Cytochrome P450 2F2 OS=Mus musculus GN=Cyp2f2 PE=2 SV=1     |
|                                         | 5       | SwissProt                   | #2::CP237_MOUSE      | 339   | 60590  | 22      | 22         | 8         | 8        | 0.89  | Cytochrome P450 2C37 OS=Mus musculus GN=Cyp2c37 PE=2 S      |
|                                         | 6       | SwissProt                   | #211CP239_MOUSE      | 251   | 60856  | 13      | 13         | 4         | 4        | 0.37  | Cytochrome P450 2C39 O5=Mus musculus GN=Cyp2c39 PE=2 5      |
|                                         | 7       | SwissProt                   | #2::CP238_MOUSE      | 150   | 61356  | 9       | 9          | 4         | 4        | 0.37  | Cytochrome P450 2C38 OS=Mus musculus GN=Cyp2c38 PE=2 S      |
|                                         | 1       | SwissProt                   | #2::GRP78_MOUSE      | 1308  | 81404  | 55      | 55         | 21        | 21       | 2.47  | 78 kDa glucose-regulated protein OS=Mus musculus GN=Hspa5   |
|                                         | 2       | SwissProt                   | #2::HSP7C_MOUSE      | 362   | 78937  | 21      | 21         | 8         | 8        | 0.63  | Heat shock cognate 71 kDa protein OS=Mus musculus GN=Hspal  |
|                                         | 1       | SwissProt                   | #2::CYB5_MOUSE       | 1217  | 16817  | 42      | 42         | 5         | 5        | 3.08  | Cytochrome b5 OS=Mus musculus GN=Cyb5a PE=1 SV=2            |
|                                         | 1       | SwissProt                   | 2::PDIA1_MOUSE       | 1123  | 64694  | 53      | 53         | 16        | 16       | 2.54  | Protein disulfide-isomerase OS=Mus musculus GN=P4hb PE=1 SV |
|                                         | 1       | SwissProt                   | #2::CP1A2_MOUSE      | 1054  | 63034  | 38      | 38         | 10        | 10       | 1.31  | Cytochrome P450 1A2 OS=Mus musculus GN=Cyp1a2 PE=1 SV=      |
|                                         | 1       | SwissProt                   | #2::ENPL_MOUSE       | 1018  | 103744 | 63      | 63         | 19        | 19       | 1.53  | Endoplasmin OS=Mus musculus GN=Hsp90b1 PE=1 5V=2            |
|                                         | 1       | SwissProt                   | 21:RDH7_MOUSE        | 1005  | 38455  | 45      | 45         | 12        | 12       | 4.07  | Retinol dehydrogenase 7 OS=Mus musculus GN=Rdh7 PE=2 SV=    |
|                                         | 2       | SwissProt                   | #2::H1786_MOUSE      | 597   | 38949  | 23      | 23         | 7         | 7        | 1.37  | 17-beta-hydroxysteroid dehydrogenase type 6 OS=Mus musculus |
|                                         | 1       | SwissProt                   | #2::MGST1_MOUSE      | 863   | 18595  | 25      | 25         | 3         | 3        | 2.57  | Microsomal glutathione S-transferase 1 OS=Mus musculus GN=M |
| 1                                       | 1       | SwissProt                   | 2::RL7A_MOUSE        | 770   | 35860  | 28      | 28         | 8         | 8        | 1.91  | 60S ribosomal protein L7a OS=Mus musculus GN=Rpl7a PE=2 SV  |
| ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) | 1       | SwissProt                   | #2::RLA0_MOUSE       | 763   | 37215  | 24      | 24         | 7         | 7        | 1.47  | 60S acidic ribosomal protein P0 OS-Mus musculus GN-Rplp0 PE |
|                                         | 1       | SwissProt                   | #2::CP2AC_MOUSE      | 763   | 61325  | 35      | 35         | 14        | 14       | 2.25  | Cytochrome P450 2A12 OS=Mus musculus GN=Cyp2a12 PE=1 S      |
|                                         | 2       | SwissProt                   | #2::CP2A5_MOUSE      | 59    | 61696  | 5       | 5          | 2         | 2        | 0,17  | Cytochrome P450 2A5 OS=Mus musculus GN=Cyp2a5 PE=2 SV=      |
|                                         | 1       | SwissProt                   | #2::ACSL1_MOUSE      | 749   | 86078  | 38      | 38         | 18        | 18       | 1.90  | Long-chain-fatty-acidCoA ligase 1 OS=Mus musculus GN=AcsI1  |
|                                         | 2       | SwissProt                   | #21:ACSL5_MOUSE      | 297   | 84629  | 15      | 15         | 6         | 6        | 0.41  | Long-chain-fatty-acidCoA ligase 5 OS=Mus musculus GN=AcsI5  |
|                                         | 1       | SwissProt                   | if2::RL13_MOUSE      | 748   | 28083  | 31      | 31         | 7         | 7        | 2.90  | 60S ribosomal protein L13 OS=Mus musculus GN=Rpl13 PE=2 S   |
|                                         | 1       | SwissProt                   | #2::PDIA3_MOUSE      | 692   | 64504  | 40      | 40         | 15        | 15       | 2.06  | Protein disulfide-isomerase A3 OS=Mus musculus GN=Pdia3 PE= |
|                                         | 1       | SwissProt                   | d2::CP3A8_HOUSE      | 686   | 65154  | 32      | 32         | 10        | 10       | 1.25  | Cytochrome P450 3A11 OS=Mus musculus GN=Cyp3a11 PE=1 S      |
|                                         | 1       | SwissProt                   | #2::UDB17_MOUSE      | 677   | 67040  | 34      | 34         | 9         | 9        | 0.91  | UDP-glucuronosyltransferase 2B17 OS=Mus musculus GN=Ugt2b   |
|                                         | 2       | SwissProt                   | #2::UD11_MOUSE       | 429   | 65361  | 19      | 19         | 7         | 7        | 0.80  | UDP-glucuronosyltransferase 1-1 OS=Mus musculus GN=Ugt1a1   |
|                                         | 3       | SwissProt                   | #2::UD16_MOUSE       | 245   | 65516  | 14      | 14         | 6         | 6        | 0.67  | UDP-glucuronosyltransferase 1-6 OS=Mus musculus GN=Ugt1a6   |
|                                         | 1       | SwissProt                   | #2::EST3A_MOUSE      | 668   | 67490  | 28      | 28         | 5         | 5        | 0,43  | Carboxylesterase 3A OS=Mus musculus GN=Ces3a PE=1 SV=2      |

Only proteins with significant matches to at least 2 sequences remain. The filtering is very flexible, with lots of useful terms.

|          | hi    |                        |                     |          | 13971          |           |          |           |     |      | 5 permalink                                                                                                 |
|----------|-------|------------------------|---------------------|----------|----------------|-----------|----------|-----------|-----|------|-------------------------------------------------------------------------------------------------------------|
| Column   |       | + (220 -               | arotoinc)           |          | 90             |           |          |           |     |      |                                                                                                             |
|          |       |                        |                     |          |                |           |          |           |     |      |                                                                                                             |
|          | 15: 5 | standard ()            | 12 out of 16)       |          |                |           |          |           |     |      |                                                                                                             |
| Filters: | (N    | OT(Databa              | se is cRAP) AND "Nu | m. of si | gnificant      | sequences | s" >= 2) |           |     |      |                                                                                                             |
| xport as | CSN   | 2                      |                     |          |                |           |          |           |     |      |                                                                                                             |
|          |       |                        |                     | ari ne   |                |           |          |           |     |      |                                                                                                             |
| amily    | м     | -                      | Accession           | Score    | _              |           |          | Sequences |     |      |                                                                                                             |
|          | 1     | SwissProt              |                     | 1337     | 61419          | 76        | 76       | 13        | 13  | 2.00 | Cytochrome P450 2C29 OS=Mus musculus GN=Cyp2c29 PE=1 SV                                                     |
|          | 2     | SwissProt              | #2::CP254_MOUSE     | 552      | 60887          | 27        | 27       | 8         | 8   | 0.88 | Cytochrome P450 2C54 OS=Mus musculus GN=Cyp2c54 PE=2 SV                                                     |
|          | 3     | SwissProt              |                     | 489      | 61128          | 27        | 27       | 10        | 10  | 1.20 | Cytochrome P450 2C50 OS=Mus musculus GN=Cyp2c50 PE=1 SV                                                     |
|          | 4     | SwissProt              | #2::CP2F2_MOUSE     | 484      | 59267          | 32        | 32       | 12        | 12  | 2.11 | Cytochrome P450 2F2 OS=Mus musculus GN=Cyp2f2 PE=2 SV=1                                                     |
|          | 5     | SwissProt              | #2::CP237_MOUSE     | 339      | 60590          | 22        | 22       | 8         | 8   | 0.89 | Cytochrome P450 2C37 OS=Mus musculus GN=Cyp2c37 PE=2 SV                                                     |
|          | 6     | SwissProt              |                     | 251      | 60856          | 13        | 13       | 4         | 4   | 0.37 | Cytochrome P450 2C39 OS=Mus musculus GN=Cyp2c39 PE=2 SV                                                     |
|          | 7     | SwissProt              | #2::CP238_MOUSE     | 150      | 61356          | 9         | 9        | 4         | 4   | 0.37 | Cytochrome P450 2C38 OS=Mus musculus GN=Cyp2c38 PE=2 SV                                                     |
|          | 1     | SwissProt              | #2::GRP78_MOUSE     | 1308     | 81404          | 55        | 55       | 21        | 21  | 2.47 | 78 kDa glucose-regulated protein OS=Mus musculus GN=Hspa5 P                                                 |
|          | -     | SwissProt              | 2::HSP7C_MOUSE      | 362      | 78937          |           |          | 5         |     | 0.63 | Heat shock cognate 71 kDa protein OS=Mus musculus GN=Hspa8                                                  |
|          | 1     | SwissProt              | #2::CYB5_MOUSE      | 1217     | 16817          | 42        | 42 53    |           | 5   | 3.08 | Cytochrome b5 OS=Mus musculus GN=Cyb5a PE=1 SV=2                                                            |
|          | 1     | SwissProt<br>SwissProt | #2::PDIA1_MOUSE     | 1123     | 64694<br>63034 | 38        | 38       | 16        | 16  | 2.54 | Protein disulfide-isomerase OS=Mus musculus GN=P4hb PE=1 SV                                                 |
|          | 1     | SwissProt              | 2::CP1A2_MOUSE      | 1054     | 103744         | 63        | 63       | 10        | 10  | 1.31 | Cytochrome P450 1A2 OS=Mus musculus GN=Cyp1a2 PE=1 SV=1<br>Endoplasmin OS=Mus musculus GN=Hsp90b1 PE=1 SV=2 |
|          | 1     | SwissProt              | 21:RDH7_MOUSE       | 1018     | 38455          | 45        | 45       | 19        | 19  | 4.07 | Retinol dehydrogenase 7 OS=Mus musculus GN=Rdh7 PE=2 SV=2                                                   |
|          | 2     | SwissProt              | #2::H1786_MOUSE     | 597      | 38949          | 23        | 23       | 7         | 7   | 1.37 | 17-beta-hydroxysteroid dehydrogenase type 6 OS=Mus musculus                                                 |
|          | 1     | SwissProt              | #2::MGST1_MOUSE     | 863      | 18595          | 25        | 25       | 3         | í í | 2.57 | Microsomal glutathione S-transferase 1 OS=Mus musculus GN=M                                                 |
| 2        | 1     | SwissProt              | #2::RL7A_MOUSE      | 770      | 35860          | 28        | 28       | 8         | 8   | 1.91 | 60S ribosomal protein L7a OS=Mus musculus GN=Rpl7a PE=2 SV                                                  |
|          | 1     | SwissProt              | #2::RLA0_MOUSE      | 763      | 37215          | 24        | 24       | 7         | 7   | 1.47 | 605 acidic ribosomal protein P0 OS=Mus musculus GN=Rplp0 PE=                                                |
|          | 1     | SwissProt              | 2::CP2AC_MOUSE      | 763      | 61325          | 35        | 35       | 14        | 14  | 2.25 | Cytochrome P450 2A12 OS=Mus musculus GN=Cyp2a12 PE=1 SV                                                     |
|          | 2     | SwissProt              | 2::CP2A5_MOUSE      | 59       | 61696          | 5         | 5        | 2         | 2   | 0.17 | Cytochrome P450 2A5 OS=Mus musculus GN=Cyp2a5 PE=2 SV=1                                                     |
|          | 1     | SwissProt              | 2::ACSL1_MOUSE      | 749      | 86078          | 38        | 38       | 18        | 18  | 1.90 | Long-chain-fatty-acidCoA ligase 1 OS=Mus musculus GN=AcsI1                                                  |
|          | 2     | SwissProt              | #2::ACSL5_MOUSE     | 297      | 84629          | 15        | 15       | 6         | 6   | 0.41 | Long-chain-fatty-acidCoA ligase 5 OS=Mus musculus GN=AcsI5                                                  |
|          | 1     | SwissProt              | #2::RL13_MOUSE      | 748      | 28083          | 31        | 31       | 7         | 7   | 2.90 | 60S ribosomal protein L13 OS=Mus musculus GN=Rpl13 PE=2 SV                                                  |
|          | 1     | SwissProt              | 21:PDIA3_MOUSE      | 692      | 64504          | 40        | 40       | 15        | 15  | 2.06 | Protein disulfide-isomerase A3 OS=Mus musculus GN=Pdia3 PE=1                                                |
|          | 1     | SwissProt              | #2::CP3AB_MOUSE     | 686      | 65154          | 32        | 32       | 10        | 10  | 1.25 | Cytochrome P450 3A11 OS=Mus musculus GN=Cyp3a11 PE=1 SV                                                     |
|          | 1     | SwissProt              | ef2::UD817_MOUSE    | 677      | 67040          | 34        | 34       | 9         | 9   | 0.91 | UDP-glucuronosyltransferase 2817 OS=Mus musculus GN=Ugt2b1                                                  |
|          | 2     | SwissProt              | 2::UD11_MOUSE       | 429      | 65361          | 19        | 19       | 7         | 7   | 0.80 | UDP-glucuronosyltransferase 1-1 OS=Mus musculus GN=Ugt1a1 I                                                 |
|          | 3     | SwissProt              | #2::UD16_MOUSE      | 245      | 65516          | 14        | 14       | 6         | 6   | 0.67 | UDP-glucuronosyltransferase 1-6 OS=Mus musculus GN=Ugt1a6 R                                                 |
|          | 1     | SwissProt              | #2::EST3A_MOUSE     | 668      | 67490          | 28        | 28       | 5         | 5   | 0.43 | Carboxylesterase 3A OS=Mus musculus GN=Ces3a PE=1 SV=2                                                      |
|          | 1     | SwissProt              | #2::RL4_MOUSE       | 650      | 55568          | 34        | 34       | 11        | 11  | 1.59 | 605 ribosomal protein L4 OS=Mus musculus GN=Rpl4 PE=1 SV=3                                                  |


Another thing that you could easily do would be to exclude proteins from the contaminants database

|                  |                                                                                                                                   |                | -        | -           | _              | file=.%2Fd            | ata%2FF9811           | 39.dat_ignor | eionsscorel | elow=0.0  | 05:_prefertaxonomy=0:_sigthreshold=0.05:percolate=1 😭 🌄                                                          |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------|----------------|----------|-------------|----------------|-----------------------|-----------------------|--------------|-------------|-----------|------------------------------------------------------------------------------------------------------------------|
| roteins (4       | 48) Re                                                                                                                            | port Builder   | Unassi   | gned (30    | 3973           |                       |                       |              |             |           | 5 permalink                                                                                                      |
| otein hi         | ts (228                                                                                                                           | proteins)      |          |             |                |                       |                       |              |             |           |                                                                                                                  |
|                  |                                                                                                                                   | 12 out of 16)  |          |             |                |                       |                       |              |             |           |                                                                                                                  |
|                  | ment: <cu< th=""><th></th><th>Load</th><th>Make</th><th>default.</th><th></th><th></th><th></th><th></th><th></th><th></th></cu<> |                | Load     | Make        | default.       |                       |                       |              |             |           |                                                                                                                  |
| Annange          |                                                                                                                                   | abled          | - Crosse | C) Classics | deline j       | Availab               |                       |              |             |           |                                                                                                                  |
| Num of<br>Num of | se<br>ion<br>f matches<br>f significant n<br>f sequences<br>f significant s                                                       |                | *        |             | Num, of si     | nique sequer          | ices<br>pue sequences |              |             |           |                                                                                                                  |
| Iters: (N        | OT(Databa                                                                                                                         | ise is cRAP) A | ,ND "Nu  | m. of sig   | mificant       | sequences             | ">= 2)                | Ply.         |             |           |                                                                                                                  |
| mity   M         |                                                                                                                                   | Accession      |          | Score       | Mare 1         | And the second second | Match/clab            | Sequences    | Englain     | OWDAT     | Description                                                                                                      |
| 1                | SwissProt                                                                                                                         |                | MOUSE    | 1337        | 61419          | 76                    | 76                    | 13           | 13          | 2.00      | Cytochrome P450 2C29 OS=Mus musculus GN=Cyp2c29 PE=1 S                                                           |
| 2                | SwissProt                                                                                                                         |                |          | 552         | 60887          | 27                    | 27                    | 8            | 8           | 0.88      | Cytochrome P450 2C54 OS=Mus musculus GN=Cyp2c54 PE=2 5                                                           |
| 3                | SwissProt                                                                                                                         |                |          | 489         | 61128          | 27                    | 27                    | 10           | 10          | 1.20      | Cytochrome P450 2C50 OS=Mus musculus GN=Cyp2c50 PE=1 :                                                           |
| 4 5              | SwissProt<br>SwissProt                                                                                                            |                |          | 484         | 59267<br>60590 | 32<br>22              | 32                    | 12           | 12          | 2.11 0.89 | Cytochrome P450 2F2 OS=Mus musculus GN=Cyp2f2 PE=2 SV=<br>Cytochrome P450 2C37 OS=Mus musculus GN=Cyp2c37 PE=2 9 |
| 6                | SwissProt                                                                                                                         |                |          | 251         | 60856          | 13                    | 13                    | 4            | 4           | 0.89      | Cytochrome P450 2C37 OS=Mus musculus GN=Cyp2c37 PE=2<br>Cytochrome P450 2C39 OS=Mus musculus GN=Cyp2c39 PE=2     |
| 7                | SwissProt                                                                                                                         |                |          | 150         | 61356          | 9                     | 13                    | 4            | 4           | 0.37      | Cytochrome P450 2C39 OS=Mus musculus GN=Cyp2c39 PE=2 5<br>Cytochrome P450 2C38 OS=Mus musculus GN=Cyp2c38 PE=2 5 |
| 1                | SwissProt                                                                                                                         |                |          | 1308        | 81404          | 55                    | 55                    | 21           | 21          | 2.47      | 78 kDa glucose-regulated protein OS=Mus musculus GN=Hspa5                                                        |
| 2                | SwissProt                                                                                                                         | 2::HSP7C       |          | 362         | 78937          | 21                    | 21                    | 8            | 8           | 0.63      | Heat shock cognate 71 kDa protein OS=Mus musculus GN=Hsoa                                                        |
|                  |                                                                                                                                   |                |          |             |                |                       |                       |              |             |           |                                                                                                                  |
|                  |                                                                                                                                   |                |          |             |                |                       |                       |              |             |           | MATRI                                                                                                            |

The columns section of Report Manager allows you to choose which columns to include and, if required, change their order

|          | A28       | *          | # Filters:       |                  |              |                |                  |                        | and the second diversion |             |            |                                                                         |
|----------|-----------|------------|------------------|------------------|--------------|----------------|------------------|------------------------|--------------------------|-------------|------------|-------------------------------------------------------------------------|
|          | A         | B          | C                | D                | E            | F              | G                | н                      | 1 T                      | J           | K          |                                                                         |
|          |           | All entrie | 5                | _                |              | _              |                  | _                      | _                        |             |            |                                                                         |
| 26<br>27 | Show P    | no         |                  | -                |              | -              |                  |                        |                          | -           |            |                                                                         |
|          | Educe     | Num of a   | ignificant seque |                  | -            |                |                  |                        |                          |             |            |                                                                         |
| 29       | e inters. | rium, urs  | ndumenu sadna    | 10.05 /- 6       |              |                |                  |                        |                          |             |            |                                                                         |
|          | Family    | Member     | Database         | Accession        | Score        | Mass           | Num. of          | Num. of                | Num. of                  | Num. of     | emPAI      | Description                                                             |
| 30       |           |            |                  |                  |              |                | matches          | significant<br>matches | sequences                | significant |            |                                                                         |
| 31       |           | 1          | iPRG_2012        | P00925           | 2140         | 46942          | 148              | 100                    | 53                       | 43          | 44.71      | Enclase 2 OS=Saccharomyces cere                                         |
| 32       |           | 2          | iPRG_2012        | P00924           | 1059         | 46844          | 71               | 46                     | 35                       | 27          | 7.47       | Enolase 1 OS=Saccharomyces cere                                         |
| 33       |           | 1          | iPRG_2012        | P00549           | 1933         | 54909          | 133              | 87                     | 56                       | 43          | 18.28      | Pyruvate kinase 1 OS=Saccharomyc                                        |
| 34       |           | 1          | PRG_2012         | P40150           | 1613         | 66668          | 105              | 66                     | 66                       | 45          | 11.76      | Heat shock protein SSB2 OS=Sacch                                        |
| 35<br>36 |           | 2          | PRG_2012         | P11484<br>P10592 | 1590<br>1591 | 66732<br>69599 | 103              | 65<br>57               | 64<br>52                 | 44 32       | 11.12      | Heat shock protein SSB1 OS=Sacch<br>Heat shock protein SSA2 OS=Sacch    |
| 30<br>37 |           | 2          | iPRG 2012        | P10592           | 1161         | 69786          | 85               | 44                     | 48                       | 26          | 3.02       | Heat shock protein SSA2 US=Sacch<br>Heat shock protein SSA1 OS=Sacch    |
| 38       |           | 3          | PRG 2012         | P16474           | 233          | 74479          | 23               | 8                      | 17                       | 6           | 0.32       | 78 kDa glucose-regulated protein hor                                    |
| 39       |           | 1          | IPRG 2012        | P00330           | 1453         | 37282          | 73               | 51                     | 32                       | 25          | 13.48      | Alcohol dehydrogenase 1 OS=Sacch                                        |
| 40       |           | 2          | IPRG_2012        | P07245           | 101          | 40743          | 14               | 5                      | 7                        | 3           | 0.29       | Alcohol dehydrogenase 3, mitochono                                      |
| 41       |           | 1          | PRG 2012         | P00560           | 1382         | 44768          | 102              | 58                     | 54                       | 33          | 12.75      | Phosphoglycerate kinase OS=Sacch                                        |
| 42       |           | 1.         | IPRG 2012        | P00359           | 1361         | 35838          | 76               | 54                     | 31                       | 25          | 12.29      | Glyceraldehyde-3-phosphate dehydro                                      |
| 43       | 7         | 2          | PRG 2012         | P00358           | 1242         | 35938          | 69               | 48                     | 29                       | 24          | 9.89       | Glyceraldehyde-3-phosphate dehydro                                      |
| 44       | 7         | 3          | iPRG_2012        | P00360           | 505          | 35842          | 30               | 20                     | 14                       | 12          | 2.47       | Glyceraldehyde-3-phosphate dehydro                                      |
| 45       |           | 4          | iPRG_2012        | P04406           | 41           | 36201          |                  | 2                      | 4                        | 2           | 0.21       | Glyceraldehyde-3-phosphate dehydro                                      |
| 46       |           | 1          | (PRG_2012        | P06169           | 1289         | 61685          |                  | 41                     | 28                       | 26          | 4.7        | Pyruvate decarboxylase isozyme 1 C                                      |
| 47       |           | 1          | iPRG_2012        | P00950           | 1031         | 27592          |                  | 44                     | 32                       | 25          | 34.97      | Phosphoglycerate mutase 1 OS=Sar                                        |
| 48       |           | 1          | iPRG_2012        | P07281           | 1015         | 15881          | 51               | 38                     | 16                       | 13          | 22.71      | 40S ribosomal protein S19-B OS=Sa                                       |
| 49       |           | 2          | PRG_2012         | P07280<br>P00761 | 1014 922     | 15907<br>25078 | 51<br>37         | 38<br>27               | 16<br>7                  | 13<br>6     | 22.71 2.89 | 40S ribosomal protein S19-A OS=Sa                                       |
| 50<br>51 |           | 1          | iPRG 2012        | P32324           | 784          | 25070          |                  | 33                     | 33                       | 23          | 1.44       | SWISS-PROT:P00761[TRYP_PIG Tr<br>Elongation factor 2 OS=Saccharomy      |
| 52       |           | 1          | PRG 2012         | P16521           | 771          | 116727         |                  | 33                     | 47                       | 30          | 1.52       | Elongation factor 2 US=Saccharomy<br>Elongation factor 3A US=Saccharomy |
| 53       |           | 1          | IPRG 2012        | P05319           | 765          | 10739          | 38               | 29                     | 10                       | 9           | 95.65      | 60S acidic ribosomal protein P2-alph                                    |
| 54       |           | 1          | iPRG 2012        | 003048           | 721          | 15948          | 28               | 23                     | 17                       | 14          | 17.82      | Cofilin OS=Saccharomyces cerevisia                                      |
| 55       |           | 1          | IPRG_2012        | P0C0V8           | 719          | 9797           | 42               | 29                     | 15                       | 12          | 207.43     | 40S ribosomal protein S21-A OS=Sa                                       |
| 56       | 16        | 2          | PRG_2012         | 03E754           | 694          | 9811           | 41               | 28                     | 15                       | 12          | 148.28     | 40S ribosomal protein S21-B OS=Sa                                       |
| 7.       | AH 4      | data       | 20120501 FOC     | 1467 dat         | 17           | ODEAA          | ~~               |                        | 10                       | 12          | 10.11      |                                                                         |
|          | w + R     |            | Shapes • \ 🔌     |                  |              | ð - ,          | <u>∠ · ∧</u> · = | = <b>:</b> •           |                          |             |            | M.                                                                      |
| Rea      | idy.      |            |                  |                  |              |                |                  |                        |                          | 15 5        |            |                                                                         |
|          |           |            |                  |                  |              |                |                  |                        |                          |             |            |                                                                         |

Once the list is filtered and the columns arranged as required, there is a button to export the table as CSV, which can be pasted into Excel and formatted to create a suitable figure for dropping into a publication



If you are still using Mascot 2.2 or if you have some application software that requires the results in the earlier format, and you are encountering problems with timeouts and running out of memory, here are some tips:

•Ensure you are using the Select report. If you are using a third party client that has specified Peptide summary or Protein summary, add this to the URL before opening the file: &REPTYPE=select

•Don't specify a huge number of hits 'just in case'. Choose AUTO to display all protein hits that contain at least one significant peptide match: &REPORT=AUTO

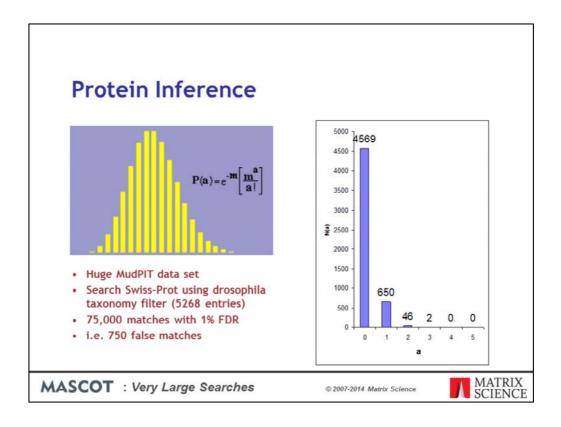
•Get rid of the yellow pop-ups: &\_showpopups=FALSE

•Setting require bold red and an expect value cut-off will minimise the number of hits: &\_ignoreionsscorebelow=0.5&\_requireboldred=1

Note that the ions score cut-off is as score threshold when the value is 1 or greater. When the value is between 0 and 1, it is an expect threshold, which is often much more useful. I often set this to 0.5 to get rid of all the junk matches.

|                           |                          | 003        | Powermarks 🥻 🗚 🎋                                                                                                                 |  |  |
|---------------------------|--------------------------|------------|----------------------------------------------------------------------------------------------------------------------------------|--|--|
| master_results.pl         |                          |            |                                                                                                                                  |  |  |
| URL                       | mascot.dat               | Value      | Description                                                                                                                      |  |  |
|                           |                          | peptide    | Peptide Summary                                                                                                                  |  |  |
|                           |                          | archive    | Archive Report                                                                                                                   |  |  |
| reptype                   |                          | concise    | Concise Protein Summary                                                                                                          |  |  |
|                           |                          | protein    | Full Protein Summary                                                                                                             |  |  |
|                           |                          | select     | Select Summary (hits)                                                                                                            |  |  |
|                           |                          | unassigned | Select Summary (unassigned)                                                                                                      |  |  |
| report                    |                          | auto       | Report all significant hits                                                                                                      |  |  |
| i opore                   |                          | N          | Report N hits                                                                                                                    |  |  |
| _showsubsets              | ShowSubSets              | 1          | Set value to 1 to report Peptide Summary hits that match<br>a subset of peptides. Default is 0.                                  |  |  |
| _requireboldred           | RequireBoldRed           | 1          | Set value to 1 to report Peptide Summary hits only if they<br>contain at least one "bold red" peptide. Default is 0.             |  |  |
| _showallfromerrortolerant | ShowAllFromErrorTolerant | 1          | Set value to 1 to report all hits from an error tolerant search, including the garbage. Default is 0.                            |  |  |
| _sigthreshold             | SigThreshold             | N          | Probability to use for the significance threshold. Range is 0.1 to 1E-18. Default is 0.05.                                       |  |  |
|                           |                          | scoredown  | Sort unassigned matches by descending score, (default)                                                                           |  |  |
| _sortunassigned           | SortUnassigned           | queryup    | Sort unassigned matches by ascending query number                                                                                |  |  |
|                           |                          | intdown    | Sort unassigned matches by descending intensity                                                                                  |  |  |
| _ignoreionsscorebelow     | IgnoreIonsScoreBelow     | N          | Any ions scores below this value are set to 0. Floating point number, default 0.0.                                               |  |  |
| _showpopups               |                          | true       | Show top 10 peptide matches fro each query in JavaScript pop-up, (default)                                                       |  |  |
|                           |                          | false      | Suppress JavaScript pop-ups.                                                                                                     |  |  |
| _alwaysgettitle           |                          | 1          | Set to 1 to force reports to fetch Fasta titles from<br>database when they are not included in the result file.<br>Default is 0. |  |  |
| _mudpit                   | Mudpit                   | N          | Number of queries at which protein score calculation<br>switches to large search mode. Default 1000                              |  |  |

If you can't remember these URL parameters, just click on the help link


| Select Summary Report         Format As       Select Summary (protein hits)         Standard scoring       Max number of hits AUTO         Standard scoring       MudPIT scoring       Ions score cut-off         Show pop-ups       Suppress pop-ups       Sort unassigned | Help<br>Show sub-sets<br>Require bold red |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| MASCOT : Very Large Searches © 2007-2014 Matrix Scient                                                                                                                                                                                                                      | MATRIX SCIENCE                            |

What do we mean by Standard scoring and MudPIT scoring?

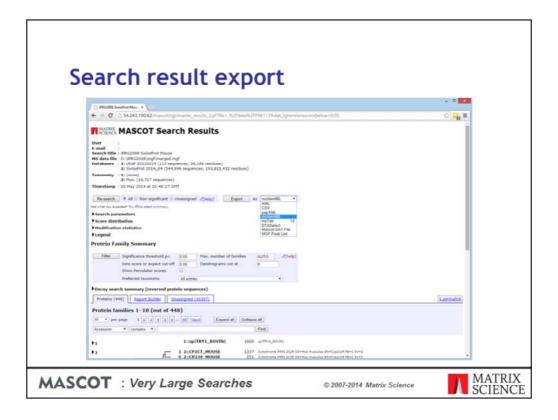
| Standard<br>• the | d pr                                            | otein                                                                            | score                                                                |                                                                      |                                                  |                  |                             |                                   |                            |                              |                                                                                               |    |
|-------------------|-------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------|------------------|-----------------------------|-----------------------------------|----------------------------|------------------------------|-----------------------------------------------------------------------------------------------|----|
|                   | d pr                                            | otein                                                                            | score                                                                |                                                                      |                                                  |                  |                             |                                   |                            |                              |                                                                                               |    |
|                   | d pr                                            | otein                                                                            | crore                                                                |                                                                      |                                                  |                  |                             |                                   |                            |                              |                                                                                               |    |
| • the             |                                                 |                                                                                  | score                                                                |                                                                      |                                                  |                  |                             |                                   |                            |                              |                                                                                               |    |
|                   | sum                                             | of the                                                                           | e ions s                                                             | cores                                                                |                                                  |                  |                             |                                   |                            |                              |                                                                                               |    |
|                   |                                                 |                                                                                  |                                                                      |                                                                      |                                                  |                  |                             |                                   |                            | 2.1                          |                                                                                               |    |
|                   |                                                 |                                                                                  | scores                                                               | for du                                                               | plica                                            | te i             | mat                         | ches                              | , w                        | nich                         | are shown                                                                                     | ın |
| par               | enth                                            | neses                                                                            |                                                                      |                                                                      |                                                  |                  |                             |                                   |                            |                              |                                                                                               |    |
|                   | roct                                            | ion to                                                                           | raduca                                                               | the co                                                               | ntrik                                            | suti             | ion                         | oflo                              | W-5                        | corir                        | ng random                                                                                     |    |
|                   |                                                 |                                                                                  | leuuce                                                               | the co                                                               | ///CI IL                                         | Juci             |                             |                                   | vv - 2                     | COLI                         | ig random                                                                                     |    |
| mai               | tche                                            | S                                                                                |                                                                      |                                                                      |                                                  |                  |                             |                                   |                            |                              |                                                                                               |    |
|                   |                                                 |                                                                                  |                                                                      |                                                                      |                                                  |                  |                             |                                   |                            |                              |                                                                                               |    |
| 342.              |                                                 | 100023283                                                                        | Hass: 383                                                            | 2803 Scor                                                            |                                                  |                  | tches:                      | 51(0)                             | Seque                      | nces: 4                      | 48 (O)                                                                                        |    |
|                   |                                                 | Observed                                                                         | Mr(expt)                                                             | Mr(calc)                                                             |                                                  |                  | Score                       | Expect                            | Rank                       | Unique                       | Peptide                                                                                       |    |
|                   | 28                                              | 359.7341                                                                         | 717.4537                                                             | 717.4537                                                             | -0.09                                            | 0                | 7                           | 4.2                               | 5                          | U                            | R.LFAIVR.G                                                                                    |    |
|                   |                                                 | 394.2371                                                                         | 786.4596                                                             |                                                                      |                                                  | 0                | 8                           | 13                                | 3                          | U                            | K.LTIADVR.A                                                                                   |    |
|                   |                                                 | 411.2073                                                                         | 820.4000                                                             | 820.3954                                                             | 5.61                                             | 0                | 3                           | 15                                | 4                          | U                            | K. TDSGLYR.C                                                                                  |    |
|                   |                                                 |                                                                                  |                                                                      |                                                                      |                                                  |                  | 12                          | 1.1                               | 5                          | U                            | K. RFLTLR. K                                                                                  |    |
|                   | 357                                             | 413.2642                                                                         | 824.5139                                                             |                                                                      | 0.48                                             | 1                |                             |                                   |                            |                              |                                                                                               |    |
|                   | 357<br>715                                      | 413.2642<br>450.7365                                                             | 899.4584                                                             | 899.4588                                                             | -0.38                                            | 0                | 10                          | 2.9                               | 2                          | U                            | K. IVDVSSDR.C                                                                                 |    |
|                   | 357<br>715<br>740                               | 413.2642<br>450.7365<br>451.7681                                                 | 899.4584<br>901.5217                                                 | 899.4588<br>901.5233                                                 | -0.38                                            | 0                | 10<br>3                     | 2.9                               | 2<br>3                     | U                            | K. IVDVSSDR.C<br>R.VTLVDVTR.N                                                                 |    |
|                   | 357<br>715<br>740<br>840                        | 413.2642<br>450.7365<br><b>451.7681</b><br>459.2484                              | 899.4584<br>901.5217<br>916.4821                                     | 899.4588<br>901.5233<br>916.4767                                     | -0.38<br>-1.72<br>5.98                           | 0                | 10<br>3<br>2                | 2.9<br>24<br>29                   | 2<br>3<br>2                | U<br>U                       | K. IVDVSSDR.C<br>R.VTLVDVTR.N<br>R.GVEFNVPR.L                                                 |    |
|                   | 357<br>715<br>740<br>840<br>844                 | 413.2642<br>450.7365<br><b>451.7681</b><br>459.2484<br>459.7299                  | 899.4584<br>901.5217<br>916.4821<br>917.4452                         | 899.4588<br>901.5233<br>916.4767<br>917.4454                         | -0.38<br>-1.72<br>5.98<br>-0.24                  | 0<br>0<br>0      | 10<br>3<br>2<br>4           | 2.9<br>24<br>29<br>15             | 2<br>3<br>2<br>6           | <b>บ</b><br>บ<br>บ           | K. IVDVSSDR.C<br>R.VILVDVIR.N<br>R.GVEFNVPR.L<br>K.ELEETAAR.N                                 |    |
|                   | 357<br>715<br>740<br>840<br>844<br>1029         | 413.2642<br>450.7365<br>451.7681<br>459.2484<br>459.7299<br>473.2757             | 899.4584<br>901.5217<br>916.4821<br>917.4452<br>944.5368             | 899.4588<br>901.5233<br>916.4767<br>917.4454<br>944.5331             | -0.38<br>-1.72<br>5.98<br>-0.24<br>3.97          | 0<br>0<br>0<br>1 | 10<br>3<br>2<br>4<br>3      | 2.9<br>24<br>29<br>15<br>21       | 2<br>3<br>2<br>6<br>3      | ม<br>ช<br>ม                  | K. IVDVSSDR.C<br>R.VILVDVIR.N<br>K.GVEFNVPR.L<br>K.ELEETAAR.M<br>R.EPPSFIKK.I                 |    |
|                   | 357<br>715<br>740<br>840<br>844<br>1029<br>1056 | 413.2642<br>450.7365<br>451.7681<br>459.2484<br>459.7299<br>473.2757<br>475.7505 | 899.4584<br>901.5217<br>916.4821<br>917.4452<br>944.5368<br>949.4864 | 899.4588<br>901.5233<br>916.4767<br>917.4454<br>944.5331<br>949.4869 | -0.38<br>-1.72<br>5.98<br>-0.24<br>3.97<br>-0.47 | 0<br>0<br>0      | 10<br>3<br>2<br>4<br>3<br>4 | 2.9<br>24<br>29<br>15<br>21<br>22 | 2<br>3<br>2<br>6<br>3<br>5 | <b>U</b><br>U<br>U<br>U<br>U | K.IVDVSSDR.C<br>R.VTLVDVTR.N<br>K.GVEFNVPR.L<br>K.ELEETAAR.M<br>R.EPPSFIKK.I<br>R.SSVSLSWGK.P |    |
|                   | 357<br>715<br>740<br>840<br>844<br>1029<br>1056 | 413.2642<br>450.7365<br>451.7681<br>459.2484<br>459.7299<br>473.2757             | 899.4584<br>901.5217<br>916.4821<br>917.4452<br>944.5368             | 899.4588<br>901.5233<br>916.4767<br>917.4454<br>944.5331<br>949.4869 | -0.38<br>-1.72<br>5.98<br>-0.24<br>3.97          | 0<br>0<br>0<br>1 | 10<br>3<br>2<br>4<br>3      | 2.9<br>24<br>29<br>15<br>21       | 2<br>3<br>2<br>6<br>3      | ม<br>ช<br>ม                  | K. IVDVSSDR.C<br>R.VILVDVIR.N<br>K.GVEFNVPR.L<br>K.ELEETAAR.M<br>R.EPPSFIKK.I                 |    |

With standard peptide summary scoring, the protein score is essentially the sum of the ions scores of all the peptides assigned to the protein. Where there are duplicate matches to the same peptide, the highest scoring match is used. A correction is applied based on the number of candidate peptides that were tested. This correction is very small unless it is a very large protein, like here, or a no-enzyme search

Despite this correction, as this example shows, when we have many low scoring matches assigned to the same protein, we can still get a high protein score, even though none of the individual peptide matches are significant



A protein with matches to just a single peptide sequence is commonly referred to as a "one-hit wonder" and is often treated as suspect. This is actually a slight oversimplification. In a search with a large number of spectra and a small database, even though the peptide false discovery rate is low, a protein can pick up multiple false matches by chance. This is easily calculated using a Poisson Distribution, where m is the average number of false matches per protein. In this example, m is 750/5268, and we would expect 650 database entries to be one-hit wonders. However, 46 entries will pick up two false matches and 2 entries will pick up three, which could mean we report 48 false proteins.


The problem isn't limited to large searches. It is the ratio between the number of spectra and the number of entries in the database that matters. So, a small search against a small database can give similar numbers

|                                   |                                                          |                                              |                                                          |                                | -      |             | ~ ~            |             |        |                                               |
|-----------------------------------|----------------------------------------------------------|----------------------------------------------|----------------------------------------------------------|--------------------------------|--------|-------------|----------------|-------------|--------|-----------------------------------------------|
| Protei                            | 1 20                                                     | ores                                         | S TOI                                                    |                                | 12     | / M         | 5:             | be          | ar     | cnes                                          |
|                                   |                                                          |                                              |                                                          |                                |        |             |                |             |        |                                               |
| MudPIT p                          | orote                                                    | in sco                                       | ore                                                      |                                |        |             |                |             |        |                                               |
| • The s                           | um of                                                    | the ex                                       | cess o                                                   | of th                          | e i    | ons         | scor           | e c         | ver    | the identity or                               |
|                                   |                                                          | hresho                                       |                                                          |                                |        |             |                |             |        | ,                                             |
| • Plus 1                          |                                                          |                                              |                                                          |                                |        |             | ,              |             |        |                                               |
| 1 (45                             | X ene                                                    | arera                                        | 50 011                                                   | 0011                           |        |             |                |             |        |                                               |
| 1249. 2::IP                       | 100023283                                                | Mass: 383                                    | 2803 Score                                               | : 0                            | Hat    | tches:      | 51(0)          | Seque       | nces:  | 48 (0)                                        |
|                                   |                                                          | _Symbol=TTN                                  |                                                          |                                |        |             |                |             |        |                                               |
| Query                             |                                                          | Mr(expt)                                     | Mr(calc)                                                 |                                |        |             | Expect         |             |        | Peptide                                       |
| 28                                | 359.7341 394.2371                                        |                                              | 717.4537                                                 | -0.09                          | 0      | 7           | 4.2            | 5           | U      | R.LFAIVR.G                                    |
| 209                               | 394.2371<br>411.2073                                     | 786.4596                                     |                                                          | -0.46                          | 0      | 8           | 13             | 4           | 0      | K.LTIADVR.A                                   |
| 334                               | 411.2073                                                 | 820.4000                                     |                                                          | 0.48                           | 1      | 12          |                | 4           | U      | K.TDSGLYR.C<br>K.RFLTLR.K                     |
|                                   | 413.2642                                                 | 824.5139                                     |                                                          | -0.38                          | 0      | 10          |                | 2           | U      | K. IVDVSSDR.C                                 |
|                                   | 451.7681                                                 | 901.5217                                     |                                                          | -1.72                          |        | 3           |                | 3           | u      | R.VILVDVIR.N                                  |
| 715                               |                                                          |                                              |                                                          |                                |        |             |                | 2           |        |                                               |
| 740                               |                                                          | 916 4821                                     |                                                          | 5.98                           | 0      | 2           |                |             |        |                                               |
| 740                               | 459.2484                                                 | 916.4821                                     | 916.4767                                                 | 5.98                           |        | 2 4         |                | 6           | U      | K. GVEFNVPR.L<br>K. ELEFTAAR. M               |
| 740<br>840<br>844                 | 459.2484<br>459.7299                                     | 917.4452                                     | 916.4767                                                 | 5.98<br>-0.24<br>3.97          | 0      | 4           | 15             | 6           | U      | K.ELEETAAR.M                                  |
| 740                               | 459.2484                                                 |                                              | 916.4767<br>917.4454                                     | -0.24                          | 0      | 2<br>4<br>3 | 15<br>21       | 6<br>3<br>5 | -      |                                               |
| 740<br>840<br>844<br>1029<br>1058 | 459.2484<br>459.7299<br><b>473.2757</b><br>475.7505      | 917.4452<br>944.5368<br>949.4864             | 916.4767<br>917.4454<br>944.5331<br>949.4869             | -0.24<br>3.97<br>-0.47         | 0<br>1 | 4<br>3<br>4 | 15<br>21<br>22 | 3           | U      | K.ELEETAAR.M<br>R.EPPSFIKK.I<br>R.SSVSLSVCK.P |
| 740<br>840<br>844<br>1029         | 459.2484<br>459.7299<br><b>473.2757</b>                  | 917.4452<br>944.5368                         | 916.4767<br>917.4454<br>944.5331                         | -0.24<br>3.97                  | 0<br>1 | 4<br>3      | 15<br>21       | 3<br>5      | U<br>U | K.ELEETAAR.M<br>R.EPPSFIKK.I                  |
| 740<br>840<br>844<br>1029<br>1058 | 459.2484<br>459.7299<br>473.2757<br>475.7505<br>476.2790 | 917.4452<br>944.5368<br>949.4864<br>950.5433 | 916.4767<br>917.4454<br>944.5331<br>949.4869<br>950.5425 | -0.24<br>3.97<br>-0.47<br>0.94 | 0<br>1 | 4<br>3<br>4 | 15<br>21<br>22 | 3<br>5      | U<br>U | K.ELEETAAR.M<br>R.EPPSFIKK.I<br>R.SSVSLSVCK.P |

To avoid this problem, we use MudPIT protein scoring, in which the score for each peptide match is not its absolute score, but the amount that it is above the threshold. Therefore, matches with a score below the threshold do not contribute to the score. The MudPIT protein score is the sum of the score excess over threshold for each of the matching peptides plus one times the average threshold. For each peptide, the "threshold" is the homology threshold if it exists, otherwise it is the identity threshold.

So, even though a large protein like titin may pick up several random matches, with MudPIT scoring, the protein score is zero, so you don't see it listed in the report unless you specify a huge number of protein hits, as was done here to capture this screen shot.

By default, MudPIT protein scoring is used when the ratio between the number of queries and the number of database entries, (after any taxonomy filter), exceeds 0.001. This default switching point can be moved by changing the value of MudpitSwitch in mascot.dat. You can also switch between the two scoring methods by using the format controls at the top of the report.

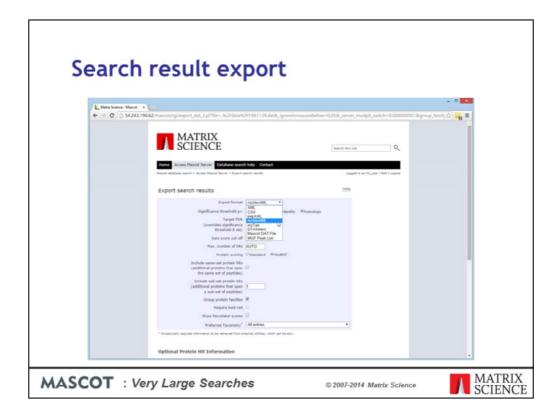


At some stage, it is likely that you will want to export the search results to another application or a relational database. If you want to write your own code, we provide a free library called Mascot Parser that provides a clean, object oriented programming interface to the result file. The supported languages are C++, Java, and Perl.

Mascot also includes a flexible export utility.

If you want the XML format, you probably know that this is what you want. If you've no idea what XML is, chances are you don't want it.

Choose CSV if you want to export to Excel - I'll show an example in a moment.


Choose pepXML if you want to export to Protein Prophet from ISB.

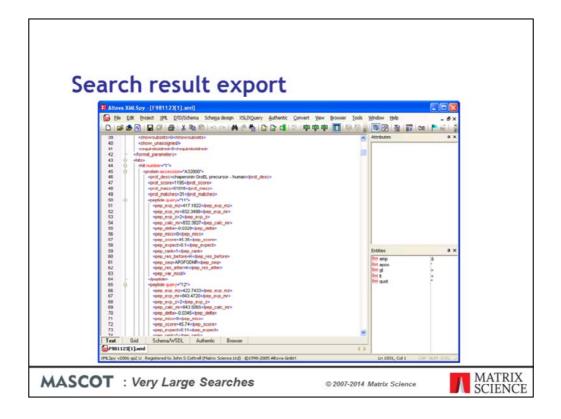
mzIdentML and mzTab are the standard formats from PSI for search result interchange. Mascot provides a very full implementation of mzIdentML and this is the one to choose if you are writing new application software that will use Mascot results

DTASelect is the tab separated format used by David Tabb's DTASelect program

The Mascot DAT file is the raw result file. If you need the result file for some reason, and don't have FTP or SCP access to your Mascot server, this is a convenient way to get the file.

MGF peak list is useful when you have the search result but can't find the peak list.




If you arrive here from one of the older reports, to begin with, you may need to select the required output format. Different formats have different options further down the page



To export to Excel, simply select CSV as the format, and click on the Export Search Results button at the bottom of the page. In recent versions of Mascot, the report is prepared and then a download button is displayed. In older versions, the download would start immediately. One the download is finished, you can open it into Excel:

|                                |            |              |            |          | oor       | •         |                   |           |           |                         |           |       |
|--------------------------------|------------|--------------|------------|----------|-----------|-----------|-------------------|-----------|-----------|-------------------------|-----------|-------|
| Microsoft E                    | xcel - F98 | 1123[1].cs   | ý.         |          |           |           |                   |           |           |                         |           |       |
| 🔄 Elle Edit y                  | iew Insert | Format Looks | i Data Win | dow Help | Adobe PDF |           |                   |           |           |                         |           | . 0 × |
|                                | 5 D. *     | 1 0 0        | 10.        | cu - 🧶   | E 1. 24   | 71 M      | <b>4</b> 100%     | - 2.      |           |                         |           |       |
| Arial                          | - 10       | - B /        | U E        |          | æ %,      | 12 .12    | CR CR             | 1.0.      | ۸         |                         |           |       |
| A1                             | -          |              |            |          |           |           |                   |           |           |                         |           |       |
| A                              | B          | C            | D          | E        | F         | G         | н                 | 1         | ្យ        | K                       | L         | -     |
| 35<br>36 Sinciferen            | 0.05       |              |            |          |           |           |                   |           |           |                         |           |       |
| 36 Significano<br>37 Max. numl |            |              |            |          |           |           |                   |           |           |                         |           |       |
| 38 Use MudP                    |            |              |            |          |           |           |                   |           |           |                         |           |       |
| 39 lons score                  |            | ,            |            |          |           |           |                   |           |           |                         |           |       |
| 40 Include sa                  |            | teins        |            |          |           |           |                   |           |           |                         |           |       |
| 41 Include sul                 |            | )            |            |          |           |           |                   |           |           |                         |           |       |
| 42 Include un                  | assigned   |              |            |          |           |           |                   |           |           |                         |           |       |
| 43 Require bo                  |            | )            |            |          |           |           |                   |           |           |                         |           |       |
| 44<br>45 Destain hit           |            |              |            |          |           |           |                   |           |           |                         |           | -     |
| 45 Protein hit                 |            | 1            |            |          |           |           |                   |           |           |                         |           |       |
| 47 prot hit nu                 | net acc    | net desc     | net score  | nnt mass | not match | nen querv |                   | nan avn r | nen evn 1 | nen calc                | nen delta | nen   |
|                                | A32800     | chaperonir   | 1195       | 61016    |           |           |                   | 832.3498  |           | 832.3827                | -0.0329   |       |
| 49 1                           |            |              |            |          | 1000      | 12        | 422.7433          | 843.472   | 2         | 843.5065                | -0.0345   |       |
| 50 1                           |            |              |            |          |           |           | 430.7328          |           |           | 859.4837                | -0.0327   |       |
| 51 1                           |            | _            |            |          |           |           | 451.2499          |           | 2         |                         | -0.0427   |       |
| 52 1<br>53 1                   |            |              |            |          |           |           | 456.7806 480.7447 |           |           | 911.5803<br>959.5036    |           |       |
| 54 1                           |            | -            |            | -        |           |           | 480.7447          |           |           | 959.5036                | -0.0288   |       |
| 55 1                           |            |              |            |          |           | 25        |                   | 1205.529  |           | 1205.596                | -0.0668   |       |
| 56 1                           |            |              |            |          |           |           | 0000 900          |           |           | 1214 651                |           |       |
| H 4 P H/.cs                    |            |              |            |          |           |           | •                 |           |           | No. of Concession, Name | C SHARES  |       |
| Deaw - De 🕢                    | AutoSha    | pes · \ k    | 00         | 4 0      | 3.1.      |           | # E O             |           |           |                         |           |       |
|                                |            |              |            |          |           | -         |                   | -         |           |                         |           |       |

Much easier and safer than "screen scraping"



For those of you into XML, here is a sample XML file. The schema is available from our web site or your local Mascot installation.

Please read the help for details.

| arci                   | n re                | รเ       | ult e                    | exp                  | 0    | rt             |                   |      |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|------------------------|---------------------|----------|--------------------------|----------------------|------|----------------|-------------------|------|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Microsoft Acce         |                     |          |                          |                      |      |                |                   |      |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 168   |
| file Edit yew          |                     | Barre    | de Tools Windo           | . Help               |      |                |                   |      |   | inporting sni sch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |
|                        |                     |          |                          |                      | 1.44 |                | er man            |      |   | a participant de la construction |       |
| K · 🖬 🖻 6              |                     | 0.12     | -1 15 24 2               | ABA                  | 193  | ** K @ 2       | • 10.             |      |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| (P) CONTRACTOR         |                     |          |                          |                      |      |                |                   |      |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| 0.1901123              | : Database (Ac      | cent 2   | 000 file format)         |                      |      |                |                   |      |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| Gen M                  | Design Thew         | XI       | <ul> <li>2-田田</li> </ul> |                      |      |                |                   |      |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| E peptide : Tab        |                     |          |                          |                      |      |                |                   |      |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 🛛  |
|                        |                     |          |                          |                      |      |                |                   | -    | - |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -     |
| pep_exp_mz<br>417.1822 | 832 3498            |          | 832 3827                 | pep_delta<br>-0.0329 | pep  |                | pep_expect<br>0.1 | pep. |   | APGFGDNR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | pep + |
| 417.1022               | 900.4953            | 2        | 900 5290                 | -0.0329              | 0    | 45.35          | 0.025             | 1    | K | LSDGVAVLK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | V     |
| 456.7806               | 911.5467            | 2        | 911.5803                 | -0.0337              | Ő    | 59             | 0.0041            | 1    | ĸ | VGLQVVAVK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | A     |
| 490.7447               | 959.4748            | 2        | 969.5036                 | -0.0288              | 0    | 45.33          | 0.11              | 14   | R | VTDALNATR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | A     |
| 595.7855               | 1189.5565           | 2        | 1189.6012                | -0.0447              | 0    | 56.55          | 0.0068            | 1    | K | EIGNISDAMK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ĸ     |
| 603.7720               | 1205.5294           | 2        | 1205.5961                | -0.0668              | 0    | 50.13          | 0.027             | 1    | K | EIGNIISDAMK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | к     |
| 608.3099               | 1214.6052           | 2        | 1214.6506                | 0.0454               | 0    | 73.21          | 0.00015           | 1    | K | NAGVEGSLIVEK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1     |
| 617 2057               | 1232.5569           | 2        | 1232.5884                | -0.0315              | 0    | 80.63          | 2.7e-05           | 1    | ĸ | VOGTSDVEVNEK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | к     |
| 672.8375               | 1343.6605           | 2        | 1343.7085                | -0.0480              | 0    | 64.38          | 0.001             | 1    | R | TVIEQSWGSPK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | V _   |
| 714.0084               | 1427.7623           | 2        | 1427.8057                | -0.0434              | 0    | 64.52          | 0.00086           | 1    | R | GVMLAVDAVIAELK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | к     |
| 714.8938               | 1427.7730           | 2        | 1427.8057                | -0.0327              | 0    | 72.61          | 0.00013           | 1    | R | GVMLAVDAVIAELK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | K     |
| 722.8849               | 1443.7552           | 2        | 1443.8006                | -0.0454              | 0    | 72.71 70.08    | 0.00014           | 1    | R | GVMLAVDAVIAELK<br>GVMLAVDAVIAELK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ĸ     |
| 752.8643               | 1443.7722           | 2        | 1503,7490                | -0.0264              | 0    | 10.06          | 2.7e-06           | 6    | K | TLNDELEIEGMK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | F     |
| 760.8461               | 1519.6777           | 2        | 1519,7439                | -0.0662              | 0    | 84.43          | 8.9e-06           | 1    | K | TLNDELEIEGMK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | F     |
| 640.3281               | 1917.9625           | 3        | 1918.0636                | -0.1010              | 0    | 101.5          | 1.3e-07           | 1    | K | ISSIGSTVPALEIANAHR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ĸ     |
| 960.0327               | 1918.0509           | 2        | 1918.0636                | -0.0127              | 0    | 87.34          | 3.2e-06           | 1    | к | ISSIQSIVPALEIANAHR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | K     |
| 1019.5106              | 2037.0067           | 2        | 2037.0153                | -0.0086              | 0    | 52.42          | 0.01              | 1    | R | IGEIEGLOVITSEYEK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | E     |
| 1057.0537              | 2112.0929           | 2        | 2112.1322                | -0.0393              | 0    | 115.78         | 4.6e-09           | 1    | R | ALMLQGVDLLADAVAVTMGPK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |
| 1065.0399              | 2128.0653           | 2        | 2128.1271                | -0.0618              | 0    | 68.73          | 0.00022           | 1    | R | ALMLOGVDLLADAVAVTMGPK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |
| 1073.0477 789.1062     | 2144.0809 2364.2968 | 2        | 2144.1220<br>2364.3263   | -0.0411              | 0    | 69.64<br>55.53 | 0.00018           | 1    | R | ALMLQGVDLLADAVAVTMGPK<br>KPLVIAEDVDGEALSTLVLNR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | G     |
| 1183.1570              | 2364 2966           | 2        | 2364.3263                | -0.0296              | 0    | 65.46          | 0.00038           | 1    | R | KPLVIAEDVDGEALSTLVLNR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1     |
| 789.1094               | 2364 3063           | 3        | 2364 3263                | -0.0200              | ő    | 94 59          | 4.5e-07           | 1    | R | KPLVIAEDVDGEALSTLVLNR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | i.    |
| 030 1277               | 7401 2740           | 2        | 14.00 104.0              | 0.0103               | n    | 17 63          | 0.072             |      | 0 | TALLDA AGUACH TTAELAA/TE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |
| Record: 14 4           | 40 .                | PI   P # | of 40                    | 4                    |      |                |                   |      |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |

XML is ideal for transferring the results to a relational database. Even Microsoft Access can open the XML file directly into database tables

| earch            | ros                                                                                                                                                                                                  | tilt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | vn                                                                                                                                                                        | 01                                                                                                                                             | +                                                                                                                                                            |                                                                                                                         |                 |                          |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-----------------|--------------------------|
|                  |                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | С,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ~٢                                                                                                                                                                        |                                                                                                                                                |                                                                                                                                                              |                                                                                                                         |                 |                          |
| ← + C () 54243.1 |                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                           |                                                                                                                                                |                                                                                                                                                              |                                                                                                                         |                 | 슈 드등 프                   |
|                  | Honor Aver<br>Reserve Aver<br>Expon<br>This selling<br>formada, we<br>browser for<br>another the op-<br>custom<br>The inform<br>relational d<br>for a Pactia<br>& Canada e<br>choose sh<br>choose sh | MATRI<br>SCIEN<br>CONTRACTOR<br>And CONTRACT<br>And CONTRACT<br>And CONTRACT<br>And CONTRACT<br>AND AND AND<br>AND AND AND<br>AND AND | Database<br>part heavily we<br>result<br>and results to<br>wir, the file to<br>ossing topor<br>results<br>the gommand<br>W<br>Deep tend in<br>t, the result is<br>part of the second<br>W<br>Deep tend in<br>t, the result is<br>part of the second<br>to part of the second to part of the second | why<br>ts<br>ts asported<br>transt is chose<br>t Search Res.<br>addon, the v<br>line,<br>mats is identis<br>secondon is<br>with results th<br>and associat<br>and resorts | Lin a variet<br>en and cou<br>uits in the<br>titity can b<br>cal. XPR, is<br>such as H<br>structured<br>at include<br>ted peptide<br>To create | ty of "machin<br>trimined usin<br>format control<br>ideal for ins<br>ideal for ins<br>intervent<br>in a very sin<br>NS/NS data<br>matches in<br>an export to | ng a web<br>ois of a<br>by scripts,<br>porting into a<br>d.<br>nilar way to<br>, you can<br>a similar way<br>a contains | Steers this set |                          |
|                  | Type of                                                                                                                                                                                              | HTHL Report                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Threshold                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                           | Same-                                                                                                                                          | Sub-sets                                                                                                                                                     | Group                                                                                                                   |                 |                          |
|                  | search                                                                                                                                                                                               | Concise Protein<br>Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | type:<br>ICA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Scoring                                                                                                                                                                   | sets<br>checked                                                                                                                                | Concession in the                                                                                                                                            | protailes<br>reiA                                                                                                       |                 |                          |
|                  | 15/15                                                                                                                                                                                                | Puptidu<br>Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | John Street                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | As format<br>controls                                                                                                                                                     | Cathat                                                                                                                                         | As format                                                                                                                                                    | nut<br>ibecked                                                                                                          |                 |                          |
|                  | HS/HS                                                                                                                                                                                                | Protein Family<br>Report                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Hamalogy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | HudPIT                                                                                                                                                                    | checked                                                                                                                                        | 1                                                                                                                                                            | shecked                                                                                                                 |                 |                          |
| 6 PRINTING       |                                                                                                                                                                                                      | Jan Ville                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                           |                                                                                                                                                |                                                                                                                                                              |                                                                                                                         |                 | * Ites al description. * |

There is a very detailed help page for all of this.

| result expor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b></b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 수 🔒 표                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Intel    Int |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Unaniper queries ()<br>genities matches en ()<br>anispecto pretentes bit()<br>Stem Auticular sequences ()<br>Query Level Information<br>Query tite ()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| sent), cannol), taut), etc. []<br>Olivy Yeeki<br>Nacho, parameteri<br>HSUMS Reak little, []<br>Rawe peptide match data []                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| [Brier command live apparents] [Export search results]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | E2054 Moto Stanice   Lunis   Terms d'une                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A2 charactering/integrand, dist, 2 pt  A2 charactering/integrand, dist, 2 pt  A2 charactering/integrand, dist, 2 pt  A2 charactering dist, 2 | Wat       Image: Comparison of the second of t |

Which describes how the export script can be called from the command line or a shell prompt, as part of an automated pipeline.

I won't go into any detail here, but this means that it is possible to set up a script that will, for example, automatically convert all of your Mascot results to XML files.

Figuring out the command line arguments from the help can be tricky so, in Mascot 2.3, we added a function to display the command line corresponding to the selected options



By the way, don't delete the original result files after exporting them or your won't be able to view the standard Mascot reports in a browser.