

MASCOT

MATRIX SCIENCE

Very large searches present a number of challenges. These are the topics we will cover during this presentation.

First though, what is a large search? And are there any search size limits to Mascot Server?

Data acquisition rates have sped up with each new generation of instrumentation and what was a large search 20 years ago is now a small search. For this talk we will consider an search with over 500,000 queries a large search.

There is no software limit to the maximum size of the search that Mascot Server supports, but larger searches do use more hardware resources and that is the ultimate limit. Given sufficient resources, we have had no problems with peak lists of 10GB or data sets with 50 x 1 hour Orbitrap runs.

<section-header>Data files • Can use Mascot Daemon to process and merge fractions • Use Distiller or a file specific data import filter</section-header>	Mascot Daemon Ele Edit Help Statua Evert Log Task Editor Parameter Editor Task Humungous search Humungous search	
MASCOT : Very Large Searches	© 2007-2023 Matrix Science	MATRIX SCIENCE

The smartest way to merge files, like fractions from a fractionated run, is using Mascot Daemon. Just tick the box at the bottom left.

The batch can be peak lists or raw files.

For Windows web servers, the upload limit is 4 GB. Mascot Daemon can also run searches from the command line if Mascot Daemon and Mascot Server are installed on the same computer. This bypasses any web server file limit and search sizes are effectively unlimited.

Mascot Daemon 2.7 and later give you another way to merge searches.

Select multiple searches in a Mascot Daemon task by CTRL+click individually searches or shift+click a range then right click and choose combined report.

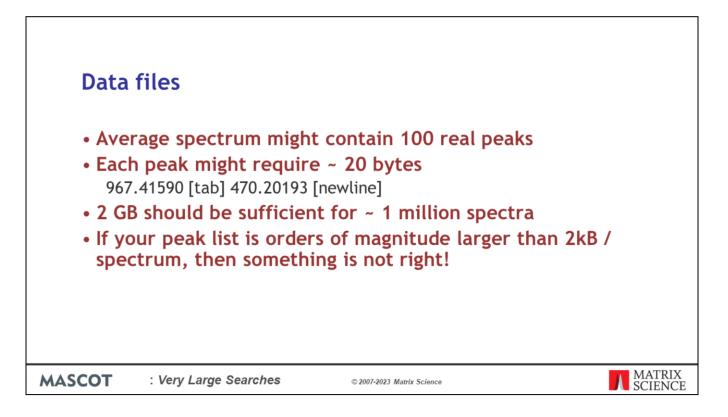
1	
	🔮 👢 Targeted Proteomics For The D:-X + X
	← → C @ O 🙆 geama_mascot/cg/master_results_2plfHeset=fileset_2722674709279 11% ☆ 🕹 🔮 » ≡
	MATRIXE MASCOT Search Results
	Results collection set of 4 files >./_dta1/20200513/1015422.dat >./_dta1/20200513/1015422.dat >./_dta1/20200513/1015422.dat >./_dta1/20200513/1015424.dat Presults collection set limitations
	Re-search @ All O Non-significant O Unassigned #(Telp) Export As CSV v
	Search parameters Second stribution
	Hooffcation statistics for all protein families
	► Legend
	Protein Family Summary
	Format Significance threshold p< 0.05 Max. number of families AUTO ((help)
	Display non-sig. matches 🗌 Min. number of sig. unique sequences 1 🗸
	Dendrograms cut at 0 Preferred taxonomy All entries
	Sensitivity
	r sensurury
	Proteins (4687) Beport Builder Unassigned.(142681)
	Protein families 1–10 (out of 4358)
	10 v per page 1 2 2 4 5 5 - 336 Hext Expand all Colapse all
	Accession v contains v Find Clear
	1 1 21:A0A0098924 10970 Flectin OS=-Choracebus sabseut 0X=46711 GN= 2 21:A0A0095XPP 355 Kovstuble actin orsastinking tetter 1 OS=Choracebus sabseut 0X=46711 G § § § § § § § §
	1 12:IA0A0D9S9H0 32:IA0A009SR480 9915 Undarasterized protein 08-Otherosebus sabase 1 2:IA0A009SR480 5241 Adm alpha cardia: madel 1 08-Otherosebus sabase 1 2:IA0A009SR480 5241 Adm alpha cardia: madel 1 08-Otherosebus sabase
MASCOT	: Very Large Searches © 2007-2023 Matrix Science T MATRIX SCIENCE

The combined search will open in a web page and list the results files that have been merged at the top of the report.

This will work with searches that have been processed by any peak picking software, including Mascot Distiller.

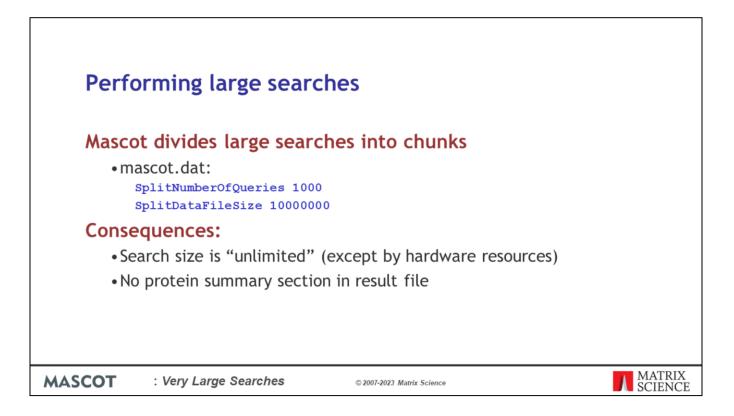
Data	files		
	e .	ts: e Matrix Science Xcalibur help page om/help/instruments xcalibur.html	
	Retains filename as scan titl BEGIN IONS TITLE=raft3031.1706.170 CHARGE=2+ PEPMASS=1243.577388 451.1228 5080	e	
маѕсот	487.4352 3283 550.4203 5087 : Very Large Searches	007-2023 Matrix Science	MATRIX

If you don't want to use Daemon, you can merge peak lists manually.


For DTA or PKL, you can download a script from our web site.

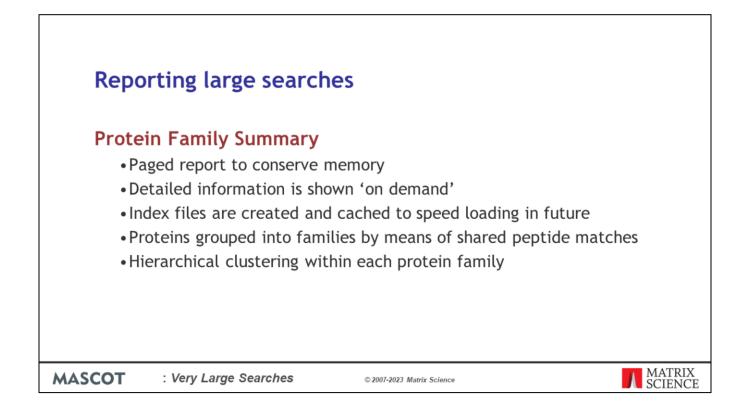
A nice feature of this script is that it puts the filename into the scan title, so you can tell which fraction a particular spectrum came from. The scan titles are displayed when you expand the rank column in the Mascot result report.

Data files		
•MGF		
Windows: copy	C:\TEMP>copy *.mgf merge.out	
Unix: cat	matrix@frill:- [matrix8frill matrix]\$ cat *.mgf > merge.out	
		MATRIX
MASCOT : Very Large Searches	© 2007-2023 Matrix Science	SCIENCE


As long as MGF files contain only peak lists, you don't need a script. Just use copy or cat.

If the MGF files have search parameters at the beginning, you'll need to remove these before merging the files. Because a number of third party utilities add commands to MGF headers, and these cause a merged search to fail, Mascot Daemon strips out header lines when merging MGF files.

In talking to Mascot users, it is clear that peak lists files are often much bigger than they should be. In other words, the peak detection is not very good. If you do a back of the envelope calculation, you can see that 2 GB should be enough for approximately 1 million spectra.

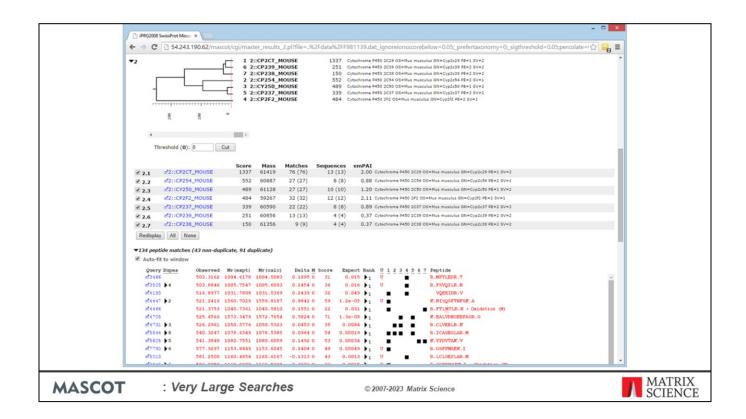

If you intend to do a lot of large searches, its worth getting the peak detection right. Shipping unnecessarily large files around wastes both time and disk space.

Mascot divides large searches into smaller chunks, so as to avoid having everything in memory at the same time. The parameters to control this are SplitNumberOfQueries and SplitDataFileSize in the Options section of mascot.dat.

One consequence of splitting a search is that there is no protein summary section in the result file. This is not a problem, because no-one wants a protein summary report for a large MS/MS search. However, some old client software gets confused by the missing section. The work around is to increase the values so that large searches never split. Maybe setting SplitNumberOfQueries to 1 million spectra and SplitDataFileSize to 10 billion bytes.

This is often OK, but remember to reset these values as soon as you are able to. Otherwise, you might find you run out of memory or address space for your large searches.

In *very* early versions of Mascot, trying to display result reports for very large searches would often lead to problems with timeouts and running out of memory. To address this, the Protein Family Summary loads most of the information 'on demand'. This requires some index files to be created on the server, and these index files are cached, so that the report loads much faster on the second and subsequent occasions. Proteins are grouped into families by means of shared peptide matches and, within each family, hierarchical clustering is used to illustrate which proteins are closely related and which are more distant.


				_ 🗆 🗙
	iPRG2008 SwissProt Mouse ×			
	← → C 🗋 54.243.190.62/mascot/c	gi/master_results_2.pl?file=%	data%2FF981139.dat	☆ 🔒 =
	Proteins (479) Report Builder	Unassigned (27741)		§ permalink
				(A.#SLUMMUS)
	Protein families 1–10 (out of 4	179)		
	10 • per page 1 2 3 4 5	5 48 Next Expand al	Collapse all	
	Accession		Find	
	F 1	1::sp TRY1_BOVIN	1606 sp[TRY1_BOVIN]	
	▶2	1 2::CP2CT_MOUSE	1337 Cytochrome P450 2C29 OS=Mus musculus GN=Cyp2c29 PE=1 SV=2	
		6 2::CP239_MOUSE	252 Cytochrome P450 2C39 OS=Mus musculus GN=Cyp2c39 PE=2 SV=2	
		7 2::CP238_MOUSE	150 Cytochrome P450 2C38 OS=Mus musculus GN=Cyp2c38 PE=2 SV=2	
		2 2::CP254_MOUSE 8 2::CP270_MOUSE	553 Cytochrome P450 2C54 OS=Mus musculus GN=Cyp2c54 PE=2 SV=1 73 Cytochrome P450 2C70 OS=Mus musculus GN=Cyp2c70 PE=2 SV=2	
		3 2::CY250_MOUSE	490 Cytochrome P450 2C50 OS=Mus musculus GN=Cyp2c50 PE=1 SV=2	
		5 2::CP237_MOUSE	339 Cytochrome P450 2C37 OS=Mus musculus GN=Cyp2c37 PE=2 SV=2	
		4 2::CP2F2_MOUSE	485 Cytochrome P450 2F2 OS=Mus musculus GN=Cyp2f2 PE=2 SV=1	
	9 500 190			
	▶3	1 2::GRP78_MOUSE	1308 78 kDa glucose-regulated protein OS=Mus musculus GN=Hspa5 PE=1 SV=3	
	⁷³ -	2 2::HSP7C_MOUSE	362 Heat shock cognate 71 kDa protein OS=Mus musculus GN=Hspa8 PE=1 SV=1	
		3 2::HS71L_MOUSE	188 Heat shock 70 kDa protein 1-like OS=Mus musculus GN=Hspa1l PE=2 SV=4	
	1120 1206 120 120 120 120 120			
	▶4	2::CYB5_MOUSE	1217 Cytochrome b5 OS=Mus musculus GN=Cyb5a PE=1 SV=2	
	▶5	2::PDIA1_MOUSE	1124 Protein disulfide-isomerase OS=Mus musculus GN=P4hb PE=1 SV=2	
	▶6	2::CP1A2_MOUSE	1054 Cytochrome P450 1A2 OS=Mus musculus GN=Cyp1a2 PE=1 SV=1	
	▶7	2::ENPL_MOUSE	1018 Endoplasmin OS=Mus musculus GN=Hsp90b1 PE=1 SV=2	
	▶8 _	1 2::RDH7_MOUSE	1005 Retinol dehydrogenase 7 OS=Mus musculus GN=Rdh7 PE=2 SV=1	
		2 2::H17B6_MOUSE	597 17-beta-hydroxysteroid dehydrogenase type 6 OS=Mus musculus GN=Hsd17b6 PE=2 SV=	1
	6.0 5.0 3.0 2.0 2.0			
	▶9	2::MGST1_MOUSE	863 Microsomal glutathione S-transferase 1 OS=Mus musculus GN=Mgst1 PE=1 SV=3	
	▶10	2::RL7A_MOUSE	770 605 ribosomal protein L7a OS=Mus musculus GN=Rpl7a PE=2 SV=2	
	L			×
		<u> </u>		MATR
MASCOT	: Very Large	Searches	© 2007-2023 Matrix Science	SCIEN

This is the appearance of a typical family report immediately after loading. The body of the report consists of three tabs, one for protein families, one for Report Builder, and one for unassigned matches. The report is paged, with a default page size of 10 families. If you wish, you can choose to display a larger number of families on a single page.

Proteins are grouped into families using a novel hierarchical clustering algorithm. If the family contains a single member, the accession string, protein score and description are listed. If the family contains multiple members, the accessions, scores and descriptions are aligned with a dendrogram, which illustrates the degree of similarity between members.

The scores for the proteins in family 2 vary from 1337 down to 73.

You can also find links to older report formats, the Peptide Summary and Select Summary reports, but these are not suitable for today's larger data sets.

If you are interested in family 2, then you click to expand it to show the details. Immediately under the dendrogram is a list of the proteins. The table of peptide matches is similar to that found in the other result reports. We only report statistically significant peptide matches. The default significance threshold is p<0.05. Duplicate matches to the same sequence are collapsed into a single row. The columns headed 1, 2, 3, etc. represent the proteins and contain a black square if the peptide is found in the protein. Some matches are shared, but each protein has some unique peptide matches, otherwise it would be dropped as a sub-set.

▼3	2 54.243. 2 8 8		1 2 2 2 3 2	::GRP78_N ::HSP7C_N ::HS71L_N	MOUSE	362	Heat shock co	e-regulated p pnate 71 kDa	robkin OS=Mus musculus ON=HspaS PE=1 SV=3 protein OS=Mus musculus OH=HspaS PE=1 SV=1 1-like OS=Mus musculus OH=Hspa11 PE=2 SV=4	
•	Threshold (0):	0	Cut Score	Mass	Matches	Sequences	emPAI			
₹ 3.1	2::GRP78	B_MOUSE	1308	81404	55 (55)	21 (21)		78 kDa gluco	se-regulated protein OS=Mus musculus GN=Hspa5 PE=1 SV=3	
₹ 3.2	#2::HSP70	_MOUSE	362	78937	21 (21)	8 (8)	0.63	Heat shock ci	ognate 71 kDa protein OS=Mus musculus GN=Hspa8 PE=1 SV=1	
₹ 3.3	2::HS71L	MOUSE	188	78552	13 (13)	4 (4)	0.28	Heat shock 7	0 kDa protein 1-like OS=Mus musculus GN=Hspa1l PE=2 SV=4	
Auto-	fit to window ry <u>Dupes</u> 20) 7	Observed	Mr (expt) 974.7367	Mr (calc) 974.6004			xpect Rank	<u>U</u> <u>1</u> <u>2</u> <u>3</u>	Peptide R.LICOAAK.N	
	01 12		1045.9413				0.038	U	R.NTVVPTK.K	- î l
	24 1	546.9979	1091.9813	1091.6430	0.3383.0		.0061	-	K.ITITNDK.G	
zf 69			1129.7232				0.027 1	U 🔳	R.LTPEEIER.M	
න් 75 න් 90			1145.9377				.0061		R.GTLDPVEK.A	
	21 59 ▶2		1191.1306 1205.7264				.0028 1 5e-05 1	U	R.VMEHFIK.L K.VLEDSDLK.K	
	57 3		1217.8713				.0038	-	K.ITITNDQNR.L	
e 1 99	60 12	611.4441	1220.8737	1220.6865	5 0.1872 0		.0001 11	υ .	K.VCNPIITK.L	
	37 11		1835.4126				.0075 1	_	K.STAGDTHLOGEDFDNR.M	
ef115			1268.9654				00058		K.ETAEAYLOK.K	
119 1181	46 ▶ 1 94		1281.0806 1479.1791				.0011	_	K.EIAEAYLGK.T K.VYEGERPLTK.D	
ef181			1479.5652					U	K.VYEGERPLTK.D	
ef196	56	769.0064	2303.9974	2303.2630	0.7344 1		.0053	υ	K.KVTHAVVTVPAYFNDAQR.Q	
	54 🕨 1		1604.2648					U 🔳	R.NELESYAYSLK.N	
ef227			1672.5930				0.018 1	_	K.MKETAEAYLOK.K	
ක්234 ක්234	65) 2				6 -0.0108 0 6 0.2770 0		1e-06 1		R.ITPSYVAFTPEGER.L R.ITPSYVAFTPEGER.L	
10231	73	571.0578	1710.1517	1709.8746	5 0.2770 0	57 1.	7e-05 🖡 1	•	R. ITPSTVAFTPEGER. L	

Moving down to family 3, the scale on the dendrogram is protein score, and HSP7C_MOUSE and HS71L_MOUSE join at a score of approximately 30. This represents the score of the significant matches that would have to be discarded in order to make one protein a sub-set of the other. These two proteins are much more similar to one other than to GRP78_MOUSE, which has non-shared peptide matches with a total score of approximately 145. Note that, where there are multiple matches to the same peptide sequence, (ignoring charge state and modification state), it is the highest score for each sequence that is used.

Immediately under the dendrogram is a list of the proteins. In this example, because SwissProt has low redundancy, each family member is a single protein. In other cases, a family member will represent multiple same-set proteins. One of the proteins is chosen as the anchor protein, to be listed first, and the other same-set proteins are collapsed under a same-set heading. There is nothing special about the protein picked for the anchor position. You may have a preference for one according to taxonomy or description, but all proteins in a same-set group are indistinguishable on the basis of the peptide match evidence.

The table of peptide matches is similar to that found in the other result reports. Duplicate matches to the same sequence are collapsed into a single row. Click on the triangle to expand.

The black squares to the right show which peptides are found in which protein. To see the peptides that distinguish HSP7C_MOUSE and HS71L_MOUSE, clear the checkbox for GRP78 MOUSE and choose Redisplay.

▼3 - [2 2::HSP7C_MOUSE 362 3 2::HS71L_MOUSE 188	 78 LDa glucose-regulated protein OS=Mus musculus ON=Hspa5 FE=1 SV=3 Heat shock cagnete 71 LDa protein OS=Mus musculus ON=Hspa5 FE=1 SV=1 Heat shock 70 LDa protein 1-like OS=Mus musculus ON=Hspa1 FE=2 SV=4 	*
< Threshold (0): 0	Cut Score Mass Matches Sequence	es emPAI	
3.1 2::GRP78_MOUSE			
3.2 ■2::HSP7C_MOUSE 3.3 ■2::HS71L_MOUSE			
d2120 p7 488.375 d5924 p1 546.397 d7519 573.376 d76.426 d70037 p1 62.144 d10037 p1 62.241 d1046 p1 641.547 d125277 607.442 d24374 d24374 950.093 d26446	Vrd Mr (expt) Mr (calc) Delta M Score 7756 7974.7367 974.600 0.1363 54 0 9797 1091.9013 1091.6430 0.3383 41 9761 1445.9377 1145.636 0.2841 0 91151 1393.4126 0.3165 0 141 91151 1393.4126 1820.7220 0.3786 0 91151 1393.4126 1820.7220 0.3586 55 0 9142 1219.3046 1818.4255 0.47920 55 3	Expect Rank U 2.2 Peptide 0.00024 1 E.LIGOAK.N 0.0061 1 E.LIGOAK.N 0.0061 1 U E.K.ITTINK.O 0.0061 1 U E.K.ITINK.O 0.0075 1 U K.KAOTILOZDINK.M 0.0015 1 U K.KAAVIO.K 0.0015 1 U K.KANVILOZDINK.L 1.3e-01 1 U K.KAVILOZDINK.L 1.3e-01 1 E.K.IXAVILOZDINK.L 0.0005 1 W K.AIAVILOZDINK.L 0.0005 1 W K.AIAVILOZDINK.L	
 2 subsets and intersections (3 : 4 5 6 7 	2::CYB5_MOUSE 1217 2::PDIA1_MOUSE 1123 2::CP1A2_MOUSE 1054	 Cytochrome B5 OS+Mus musculus ON=Cyb5a PE=1 SV=2 Protein disu/Kide-isomerase OS+Mus musculus ON=PAbb PE=1 SV=2 Cytochrome P450 1A2 OS=Mus musculus ON=Cyp1a2 PE=1 SV=1 Endoplasmin OS=Mus musculus GN=Ksp90b1 PE=1 SV=2 	_

It can now be seen that HS71L_MOUSE would be a sub-set of HSP7C_MOUSE if it was not for one match, K.ATAGDTHLGGEDFDNR.L. It is the significant score for this match that separates the two proteins in the dendrogram by a distance of 32 (score of 55 - homology threshold score of 23).

You can "cut" the dendrogram using the slider control.

•3 -		2::GRP78_N 2::HSP7C_N					ed protein OS=Mus musculus GN=Hspa5 PE=1 SV=3 kDa protein OS=Mus musculus GN=Hspa8 PE=1 SV=1	Ĩ
	8 3 8 2 9							
4	_							
Threshold (50): 50 Cut							
Threshold (50): 50 Cut							
(a	P78_MOUSE 130		Matches 55 (55)	equence 21 (2)			lucose-regulated protein OS=Mus musculus GN=Hspa5 PE=1 SV=3	
	P7C_MOUSE 36		21 (21)	21 (2.			ck cognate 71 kDa protein OS=Mus musculus GN=Hspa8 PE=1 SV=1	
Redisplay All								
✓66 peptide matche Auto-fit to winde	es (32 non-duplicate, 34 d	uplicate)						
		M- (and a)	Delte M		Preset Day		0 Parakida	
Query Dupes	Observed Mr(expt 488.3756 974.736				Expect Ran .00024 1		R.LIGDAAK.N	
#4601 } 2	523.9779 1045.941	3 1045.6375	5 0.3038 0	33	0.038 1	υ 🔳	R.NTVVPTK.K	
±5924 ▶1	546.9979 1091.981	3 1091.6430	0.3383 0	41	0.0061 🕨 1		K.ITITNDK.G	
at 6994	565.8689 1129.723			32	0.027	_	R.LTFEEIER.M	
m 7519 m 9021	573.9761 1145.937 596.5726 1191.130				0.0061		R.GTLDPVEK.A R.VMEHFIK.L	
m 9459 12	603.8705 1205.726				.5e-05	_	K. VIEDSDLK. K	
m 9857 3	609.9429 1217.871				0.0038	_	K.ITITNDONR.L	
a 9960 }2	611.4441 1220.873	7 1220.6865			0.0001	_	K.VCNPIITK.L	
z 10037 🕨 1	612.8115 1835.412	6 1834.8204	0.5923.0	35	0.0075 1	υ	K. STAGDTHLOGEDFDNR.M	
ef11545	635.4900 1268.965				.00058 1	_	K. ETAEAYLOK. K	
#11946 1	641.5476 1281.080				.00015		K.EIAEAYLGK.T	
x 18194 x 18197	740.5968 1479.179 494.1957 1479.565			42 26	0.0011 1	_	K.VYEGERPLTK.D K.VYEGERPLTK.D	
m19656	769.0064 2303.997				0.0053	_	K. VIEGERFLIK. D K. KVTHAVVTVPAYFNDAQR.Q	
m21354 1	803.1397 1604.264				.2e-05 1	_	R.NELESYAYSLK.N	
z22754	558.5383 1672.593			28	0.018	-	K.MKETAEAYLOK.K	
z23465 }2	855.9392 1709.863				.1e-06 🕨 1	_	R. ITPSYVAFTPEGER. L	
m123473 m123594 ▶2	571.0578 1710.151				.7e-05 1	_	R. ITPSYVAFTPEGER. L	
	859.6885 1717.362	5 1717.8879	9 -0.5253 0	77 9	.4e-07 🌗	υ 🔳	R.TWNDPSVQQDIK.F	

If we cut the dendrogram at a score of 50, HS71L_MOUSE will be dropped because it is now a sub-set protein. If you compare the matches to HSP7C_MOUSE with those to GRP78_MOUSE, it is clear that these are very different proteins. They are part of the same family because of two shared matches, but many highly significant matches would have to be discarded for either protein to become a sub-set of the other. In summary, we can quickly deduce from the Family Summary that there is abundant evidence that both GRP78_MOUSE and HSP7C_MOUSE were present in the sample. There is little evidence for HS71L_MOUSE. It is more likely that the HSP7C_MOUSE contained a SNP or two relative to the database sequence.

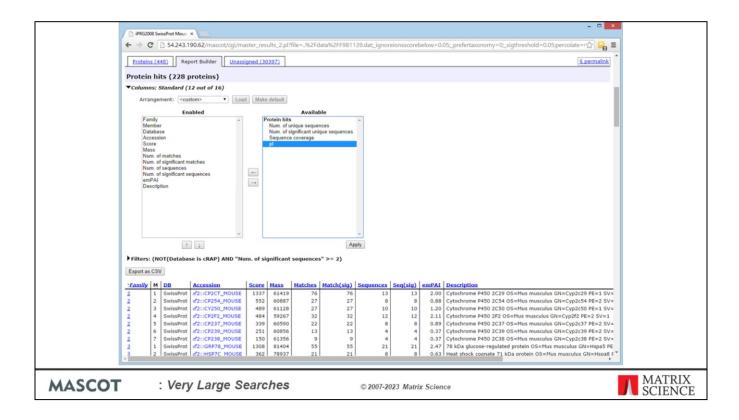
V V		SwissProt Mous ×	cot/cgi/master_results_2.pl?file=_%2Fdata%2FF981139.dat_jgnoreionsscorebelow=0.05_prefertaxonomy=0_sigthreshold=0.05percolate=1 💭 🏭 🚍	
Protein families 31-50 (out of 448) 10 • [per page Previous [2] 9 5 6 2 8 9 10 + 5 feex Protein families 31-50 (out of 448) 10 • [per page Previous [2] 9 5 6 2 8 9 10 + 5 feex P41 2::N558_MOUSE 364 NAVLADALK P41 2::N5519_MOUSE 364 NAVLADALK P42 2::R519_MOUSE 364 NAVLADALK P43 2::C22E1_MOUSE 350 Othersmal pretein 519 05+Mus musculus 0H=0p215 9E=1 5V=3 P43 2::C22E1_MOUSE 350 Othersmal pretein 513 05+Mus musculus 0H=0p22 1F=1 2V=2 V=45 2::R515A_MOUSE 344 1065man pretein 123 05+Mus musculus 0H=0p22 1F=1 2V=2 V=45 2::R515A_MOUSE 344 10651 16 (16) 3 (3) 2:12 405 febacemal pretein 513 05+Mus musculus 0H=Rp215 #F=1 5V=2 V=45 2::R515A_MOUSE 344 10651 16 (16) 3 (3) 2:12 405 febacemal pretein 513 05+Mus musculus 0H=Rp215 #F=1 5V=2 V=46 Perploide 344 10511 16 (16) 3 (3) 2:12 405 febacemal pretein 513 05+Mus musculus 0H=Rp215 #F=1 5V=2 V=50 Perploide 344 10510 0 (16) 0 (17) 10 10 <td< th=""><th>+ 7 6</th><th>U 34.245.190.62/mas</th><th>uvcgymastel_results_zymine=_mzruatamzrrsoirissuatelonssurevelow=0.05/prefertaxonomy=0/_signifeshold=0.05/percolate=1%</th><th></th></td<>	+ 7 6	U 34.245.190.62/mas	uvcgymastel_results_zymine=_mzruatamzrrsoirissuatelonssurevelow=0.05/prefertaxonomy=0/_signifeshold=0.05/percolate=1%	
10 • per page Previous 1 2 3 4 5 6 2 8 9 10 - 45 text Expand al Collapse al Sequence • Is equal to • MWVLADALK Find Clear 141 2::RS153_MOUSE 364 MADH-cytechrome b7 reductas 3 06-Mta musculus 01%-Cyt52 FF=1 5V=3 142 2::RS19_MOUSE 360 495 reductas 3 06-Mta musculus 01%-Cyt52 FF=1 5V=3 143 2::CP22L_MOUSE 356 Cytechrome 2450 10-Mta musculus 01%-Cyt52 FF=1 5V=3 144 2::RS15A_MOUSE 347 69 reductam atool 01%-Cyt52 HF=1 5V=2 145 2::RS15A_MOUSE 344 407 reductam preducta 516 cells and unclocka 01%-Rpt22 FF=1 5V=2 145.1 d2::RS15A_MOUSE 344 1651 16 (16) 3 (3) 2:12 492 reducement preducts 15: 00-Mta musculus 01%-Rpt25 FF=1 5V=2 145.1 d2::RS15A_MOUSE 344 1651 16 (16) 3 (3) 2:12 492 reducement preducts 15: 00-Mta musculus 01%-Rpt25 FF=1 5V=2 145.1 d2::RS15A_MOUSE 344 1651 16 (16) 3 (3) 2:12 492 reducement preducts 15: 00-Mta musculus 01%-Rpt25 FF=1 5V=2 145.1 d2::RS15A_MOUSE 140 (Ringmand preducts 15: 00-Mta musculus 01%-Rpt25 FF=1 5V=2 2 2 156 peblide matches (4 non-duptements, 15: 00-Mta musculu	Proteins	(448) <u>Report Builder</u>	Unassigned (30397) § permalink	
Sequence Is equal to * MNVLADALX Find Clear 141 2:::RBSR3_MOUSE 364 MAD+cyteshame E3 reductase 2 05-Mite musculus QHxCyb51 RF=1 SV=3 142 2:::RS19_MOUSE 360 455 ribesomal pretein 519 05-Mite musculus QHxCyb51 RF=1 SV=3 143 2:::CPS1E_MOUSE 358 Cyteshame F400 251: 01=Mite musculus QHxCyp2c1 RF=2 SV=1 144 2:::RS15A_MOUSE 347 65 ribesomal pretein 512: 00=Mite musculus QHxCyp2c1 RF=2 SV=1 144 2:::RS15A_MOUSE 344 400 ribesomal pretein 512: 00=Mite musculus QHxCyp2c1 RF=2 SV=2 r455 2:::RS15A_MOUSE 344 16051 16 (16) 3 (3) 2.12 405 ribesomal pretein 5154 05=Mite musculus QHxFp13 RF=1 SV=2 r451 2:::RS15A_MOUSE 344 16051 16 (16) 3 (3) 2.12 405 ribesomal pretein 5154 05=Mite musculus QHxFp13 RF=1 SV=2 r452 Score Mass Matches Sequences emplut d51 d2:::RS15A_MOUSE 344 16051 16 (16) 3 (3) 2.12 405 ribesomal pretein 5154 05=Mite musculus QHxFp13 RF=1 SV=2 r165 pagetide matches (4 non-duplicate, 12 2 duplicate) 3(3) 2.1	Protein	amilies 41–50 (ou	t of 448)	
Sequence Is equal to VMVLADALK Find Clear >41 2:::NB5R3_MOUSE 364 MADH-cytochume 50 reductase 106+Max maccula 00x-Cytoch 2014 10 Feb 19v3 >42 2:::RS19_MOUSE 360 400 reduction 50 reductase 106+Max maccula 00x-Cytoch 2014 10 Feb 19v3 >43 2:::CP2EL_MOUSE 358 Cytochume 440 211 00 Settion maccula 00x-Cytoch 1014 21 00 Feb 19v1 >44 2:::RS15A_MOUSE 347 605 reducemal protein 513 00 Feb 00x 00x 60x 60x 60x 60x 60x 60x 60x 60x	10 • pe	r page Previous 1	2 2 4 5 6 7 8 9 10 45 Next Expand all Collapse all	
↓11 2:::NBSR3_HOUSE 364 MADH-rytechrame b3 reductive 20 de-Mus musculus d0H-g513 PE=1 SV-3 ↓22 2:::RS19_MOUSE 360 455 rhasemal protein 510 01=Mus musculus d0H-g513 PE=1 SV-3 ↓43 2:::CP2E1_MOUSE 356 Cytachrame P450 281 05=Mus musculus d0H-g513 PE=1 SV-2 ↓44 2::RS19_MOUSE 347 655 rhasemal protein 512 01=Mus musculus d0H-g5128 PE=1 SV-2 ↓44 2::RS15A_MOUSE 344 450 rhasemal protein 513 00=Mus musculus d0H-g5128 PE=1 SV-2 ▼45 2::RS15A_MOUSE 344 1651 16 (16) Sequences emPAI 45.1 #2::RS15A_MOUSE 344 1651 Natches Sequences emPAI 45.1 #2::RS15A_MOUSE Generyed Mitckey) Mutchey Peptide fit274 #3::Septide Observed Mit (expt) Mit (expt) Mutchey <td< td=""><td>Sequence</td><td></td><td></td><td></td></td<>	Sequence			
42 2::RS19_MOUSE 360 405 rheesmal protein 519 00=Hest muteulus 0H=Rpt39 RE=1 SV-3 43 2::RC22E1_MOUSE 350 Cytechname P450 2E1 01=Hust muteulus 0H=Rpt39 RE=1 SV-3 44 2::RC12A_MOUSE 374 605 rheesmal protein 513 00=Hust muteulus 0H=Rpt32 RE= 2 SV=1 *45 2::RC15A_MOUSE 374 605 rheesmal protein 515 00=Hust muteulus 0H=Rpt32 RE= 1 SV=2 *45 2::RC15A_MOUSE 344 405 rheesmal protein 515 00=Hust muteulus 0H=Rpt32 RE= 1 SV=2 *45.1 d2::RC15A_MOUSE 344 10651 16 (16) 3 (3) 2.12 405 rheesmal protein 515 0S=Hust muteulus 0H=Rpt55 RE=1 SV=2 *16 peptide matches (4 non-duplicate, 12 duplicate) 3(3) 2.12 405 rheesmal protein 515 0S=Hust muteulus 0H=Rpt55 RE=1 SV=2 *16 peptide matches (4 non-duplicate, 12 duplicate) UE La M Score Expect Rank U Peptide *110 S.00*77 1044.7001 1044.600 0.00033 b 1 U. R.MSVLADALR, 5 *111274 611.8668 1264.1758 1264.1758 1.100 G 10 100 R.MSVLADALR, 5 *111274 611.8668 1264.1758 0.0375 G (659) 0.0375 G (750 G 1040.0400R, 5 100 R.MSVLADALR, 5 *111274 611.8666 1264.7				
→33 2::CP22E_MOUSE 358 Cytchrome P450 281 05+Mss musculus 08+Cy224 P8-2 50+1 →44 2::RL22_MOUSE 347 655 ribosomal protein 12: 05+Mss musculus 08+Cy224 P8-2 50+1 ★44 2::RL22_MOUSE 344 455 ribosomal protein 12: 05+Mss musculus 08+Cy224 P8-2 50+1 ▼45 2::RS15A_MOUSE 344 455 ribosomal protein 513: 05+Mss musculus 08+Rpi22 P8-1 50+2 ▼45 2::RS15A_MOUSE 344 456 ribosomal protein 513: 05+Mss musculus 08+Rpi25 P8-1 50+2 ▼16 peptide matches (4 non-duplicate, 12 duplicate) 3 (3) 2.12 405 ribosomal protein 513: 05+Mss musculus 08+Rpi15s P8-1 50+2 ♥ Auto-fit to window 0eery Dagees Observed Mr(expt) Mr(calc) Delta M Score Expect Rank U Peptide dir2125 531.9651 1261.7300 0.6120 0 51.0005 1.100 0 45 0.00053 1.1 V11275 631.9646 1261.7300 0.6172 0 77 2.4e-06 1.1 N. NOTADALX, 6 d11275 631.9641 1261.7662 1261.7309 0.6770 0 1.97 0.8071ADALX, 6 1.00 R. NOTADALX, 6 d11275 631.9414 1261.7662 1261.7309 0.6730 0 1.07 R. NOTADALX, 6 1.07 R. NOTADALX, 6 d11275 631.9414 1261.7662 1261.7309 0.6730 0 1.07 R. NOTADALX, 6		_		
¹ 44 ¹ 2:RL22_MOUSE ³ 47 ¹ 65 rhosemal protein 12:05*Mus musculus 010+Rp12: PE=1 5V=2 ¹ 45 ¹ 2:RS15A_MOUSE ³ 44 ¹ 455 rhosemal protein 515:05*Mus musculus 010+Rp12: PE=1 5V=2 ¹ 45 ¹ 2:RS15A_MOUSE ³ 44 ¹ 455 rhosemal protein 515:05*Mus musculus 010+Rp15: PE=1 5V=2 ¹ 45 ¹ 2:RS15A_MOUSE ³ 44 ¹ 455 rhosemal protein 515:05*Mus musculus 010+Rp15: PE=1 5V=2 ¹ 45 ¹ 2:RS15A_MOUSE ³ 44 ¹ 1651 ¹ 16 (16) ¹ 3 (3) ² .12 ¹ 2 dos rhosemal protein 515:05*Mus musculus 010+Rp15: PE=1 5V=2 ¹ 45 ¹ 16 ¹ 16 ¹ 16 (16) ¹ 16 (16) ¹ 16 ¹ 1 ¹ 16 ¹ 10 ¹ 1 ¹ 10 ¹ 10 ¹ 1 ¹ 10		_		
*45 2::RS15A_MOUSE 344 405 mbasemal protein 512a 05=Mus musculus 00=#pg15a PE=1 5V=2 *45 2::RS15A_MOUSE 344 16651 16 (16) 3 (3) 2.12 405 mbasemal protein 515a 05=Mus musculus 00=#pg15a PE=1 5V=2 *16 peptide matches (4 non-duplicate, 12 duplicate) 344 16651 16 (16) 3 (3) 2.12 405 mbasemal protein 515a 05=Mus musculus 00=#pg15a PE=1 5V=2 *16 peptide matches (4 non-duplicate, 12 duplicate) ************************************				
45.1 22::R515A_MOUSE 344 Mass Matches Sequences emPAI 45.1 #22::R515A_MOUSE 344 1651 16 (16) 3 (3) 2.12 405 rbssemal pretein 515a 05=Mus museuks 08+#Rp15a PE=1 5V=2 #165 peptide matches (4 non-duplicate, 12 duplicate) 3 (3) 2.12 405 rbssemal pretein 515a 05=Mus museuks 08+#Rp15a PE=1 5V=2 Ø Auto-fits to window 0 merry Dapes Observed Mr(expt) Mr(acpt)		-		
45.1 #2::R515A_MOUSE 34 16651 16 (16) 3 (3) 2.12 405 rebestmal protein 515 a 05+Mus musculus 0M+#spat5a PE=1 5V+2 V16 peptide matches (4 non-duplicate, 12 duplicate) Image: Constraint of the mindow Image: Constraint of the mindow Query Depase Observed Mr (expt.) Mr (expt.) Nr (calc) Dalta M Score Expect Rank U Peptide dil225 >5 050-3777 104.407 104.4089 0.100 G 45 0.00053 1 U Nr WILLOR.L dil2255 >5 051.9651 1261.500 0.180 Z 0.77 2.4-06 1 U Nr WILLOR.L dil2255 >5 531.9661 1261.7308 0.180 Z 0.77 2.4-06 1 U Nr WILLOR.L dil225 >5 531.9512 1261.7308 0.224 0 (6) 1.60 D 1 0.80712 0.77 dil225 631.9414 1261.7082 0.224 0 (6) 1.07 R. MUTALALK.S 0.0013 1 U Nr MULLALK.S d'11253 631.9414 1261.7080 0.2706 0 (224 0.00055 1) 1 U	₹45	2::RS15A_MOUSE		
² Auto-fit to window Observed Mr (expt) Mr (expt) Mr (expt) Mr (expt) Mr (expt) Mr (expt) Mr (expt) Mr (expt) Mr (expt) Mr (expt) Mr (expt) Mr (expt) Mr (expt) Mr (expt) Mr (expt) Mr (expt) Mr (expt) Mr (expt) Mr (expt)	45.1	2::RS15A_MOUSE		
² Auto-fit to window Observed Mr (expt) Mr (expt) Mr (expt) Mr (expt) Mr (expt) Mr (expt) Mr (expt) Mr (expt) Mr (expt) Mr (expt) Mr (expt) Mr (expt) Mr (expt) Mr (expt) Mr (expt) Mr (expt) Mr (expt) Mr (expt) Mr (expt)	▼16 pept	de matches (4 non-duplic	ate. 12 duniicate)	
d3708 5 500.3777 1014.7407 1014.4308 0.1000 4 0.00033 1 U <td></td> <td></td> <td>any an experimency</td> <td></td>			any an experimency	
#11255 #53.9453 1241.7309 0.1272 1 0 1 0	Quer			
#11274 631.8868 1261.7591 1261.7308 0.0284 0 (66) 1.8e-05 1 U R. MOVIADALX.S #11274 631.8914 1261.7682 1261.7308 0.0275 0 (59) 9.7e-05 1 U R. MOVIADALX.S #11274 631.9314 1261.7682 1261.7308 0.2775 0 (59) 9.7e-05 1 U R. MOVIADALX.S #11227 632.0080 1262.0014 1261.7308 0.2706 0 (42) 0.0065 1 U R. MOVIADALX.S #11228 632.0020 1262.0014 1261.7308 0.2706 0 (42) 0.0065 1 U R. MOVIADALX.S #11228 632.0020 1262.0014 1261.7308 0.2706 0 (42) 0.0065 1 U R. MOVIADALX.S #11285 632.0020 1262.0014 1261.7308 0.2706 0 (23) 6.4e-05 1 U R. MOVIADALX.S #11295 634.0175 1270.9355 1270.8937 0.0305 1 U R. MOVIADALX.S #11295 636.954 1277.7762 1277.762 5				
d11275 631.0914 1261.7642 1224.7308 0.03750 (59) 9.7e-05 1 U U N <td< td=""><td>01125</td><td></td><td></td><td></td></td<>	01125			
#11287 632.0080 1262.0014 1261.7308 0.2706 0 (42) 0.0065 1 U R. MAYLADALX.S #11285 632.0281 1262.0291 1261.7308 0.2930 0 (33) 6.4=-05 1 U R. MAYLADALX.S #11295 632.0251 1262.0291 1261.7308 0.2930 0 (33) 6.4=-05 1 U R. MAYLADALX.S #11295 632.0351 1270.6905 1.2926.000 1 U R. MAYLADALX.S #11296 435.9594 1277.7722 0.05050 50 0.000044 U R. MAYLADALX.S #11710 M. MAYLADALX 5 0xidation (0)				
dl1058 632,0218 1262,0391 1261,7308 0.2893 0 (d3) 6.4e-05 1 0 N_BOWLADLEX.S dl1604 1 636.4751 1270.3355 1270.5094 0.2852 0 28 0.03 1 0 N_BOWLEXES.Q dl1070 1 05.8694 1277.77724 1277.227 0.0505 0 0.00004 1 0 N_BOWLEXES.Q				
slidot ▶1 636.4751 1270.9355 1270.6904 0.2452 28 0.03 ▶1 U W.MONILLESR.Q sli1760 ★1 639.8954 1277.7762 1277.7257 0.0505 0 0.00084 ▶1 U R.MENVERDALK,S + Oxidation (M)				
		636,4751	1270.9355 1270.6904 0.2452 0 28 0.03 1 U K.WONNLLPSR.Q	
11790 639.9899 1277.9652 1277.7257 0.2396 0 (48) 0.00054 p_1 0 K. MAVLAUALK.S + OKIGATION (K)	s 1 178			
		₫11790 639.9899	1277.9652 1277.7257 0.2396 0 (48) 0.00054 🖡 U.R. MAVIADALK S + Omdation (M)	
	▶46	2::UD2A3_MOUSE	333 UDP-glucuronosyltransferase 2A3 OS=Mus musculus ON=Ugt2a3 PE=1 SV=1	
146 2::UD2A3_MOUSE 33 UDP-glucurenosylbraniferase 2A3 05=Mus musculus 0M=Ug12a3 PE=1 SV=1	▶47	2::COMT_MOUSE	317 Catechol O-methyltransferase OS=Mus musculus GN=Comt PE=1 SV=2	
	▶48	2::FMO5_MOUSE	315 Dimethylaniline monooxygenase [N-oxide-forming] 5 OS=Mus musculus GN=Fmo5 PE=2 SV=4	
▶47 2::COMT_MOUSE 317 Catechol 0-methyltransferase 05=Mus musculus 0N=Comt PE=1 5V=2	▶49	2::RS9_MOUSE	314 405 ribosomal protein S9 OS=Mus musculus GN=Rps9 PE=1 SV=3	
P47 2::CMT_BOUSE 317 Catechil O-methyltransferase OS=Nus museulus OIt=Comt P(=1 SV=2) P48 2::FMOS_BUOSE 315 Dimethylanilee monooygenase [Irosside-forming] 3 OS=Nus museulus OIt=FmoS P(=2 SV=4)		-	· · · · · · · · · · · · · · · · · · ·	

The family report also includes a text search facility, which is particularly important for a paged report. You can search by accession or description sub-string, or by query, mass or sequence. Here, for example, we searched for a peptide sequence. The display jumps to the first instance of the sequence, expands, and highlights (in green) the target peptides.

		48) Rep	oort Builder	ied (3039	4						<u>\$ permalini</u>
Protei	n hi	its (476 p	proteins)								
Colun	ins:	Standard (12 out of 16)								
Filter	s CS	V		1							
*Eamily		-	Accession	Score	Mass			Sequences	Seq(sig)		Description
1		cRAP SwissProt	ef1::sp TRY1_BOVIN	1606	28266	48	48	7	7	2.86	
2	2		d2::CP2CT_MOUSE d2::CP254_MOUSE	1337 552	61419 60887	27	27	13	13	2.00	
2	3		2::CP254_MOUSE	489	61128	27	27	10	10	1.20	
2	4	SwissProt		484	59267	32	32	12	10	2.11	
2	5	SwissProt	ef2::CP237_MOUSE	339	60590	22	22	8	8	0.89	
2	6	SwissProt		251	60856	13	13	4	4	0.37	Cytochrome P450 2C39 OS=Mus musculus GN=Cyp2c39 PE=
2	7	SwissProt	d2::CP238_MOUSE	150	61356	9	9	4	4	0.37	Cytochrome P450 2C38 OS=Mus musculus GN=Cyp2c38 PE=
3		SwissProt	ef2::GRP78_MOUSE	1308	81404	55	55	21	21	2.47	78 kDa glucose-regulated protein OS=Mus musculus GN=Hs
3	2	SwissProt	d2::HSP7C_MOUSE	362	78937	21	21	8	8	0.63	Heat shock cognate 71 kDa protein OS=Mus musculus GN=H
4	1		d2::CYB5_MOUSE	1217	16817	42	42	5	5	3.08	
2	1	SwissProt		1123	64694	53	53	16	16	2.54	Protein disulfide-isomerase OS=Mus musculus GN=P4hb PE=
6	1		@2::CP1A2_MOUSE	1054	63034	38	38	10	10	1.31	Cytochrome P450 1A2 OS=Mus musculus GN=Cyp1a2 PE=1
Z	1	SwissProt		1018	103744	63 45	63 45	19	19	1.53	Endoplasmin OS=Mus musculus GN=Hsp90b1 PE=1 SV=2
8	2	SwissProt SwissProt	d2::RDH7_MOUSE d2::H17B6_MOUSE	1005	38455 38949	45	45	12	12	4.07	Retinol dehydrogenase 7 OS=Mus musculus GN=Rdh7 PE=2 17-beta-hydroxysteroid dehydrogenase type 6 OS=Mus musi
2	1	SwissProt	d2::MGST1_MOUSE	863	18595	25	25	3	3	2.57	Microsomal glutathione S-transferase 1 OS=Mus musculus G
10	1		2::RL7A_MOUSE	770	35860	28	28	8	8	1.91	60S ribosomal protein L7a OS=Mus musculus GN=RpI7a PE=
11	1		m2::RLA0_MOUSE	763	37215	24	24	7	7	1.47	60S acidic ribosomal protein P0 OS=Mus musculus GN=Rplp0
12	1		2::CP2AC_MOUSE	763	61325	35	35	14	14	2.25	
12	2		12::CP2A5_MOUSE	59	61696	5	5	2	2	0.17	
13	1	SwissProt	d2::ACSL1_MOUSE	749	86078	38	38	18	18	1.90	Long-chain-fatty-acidCoA ligase 1 OS=Mus musculus GN=A
13	2	SwissProt		297	84629	15	15	6	6	0.41	Long-chain-fatty-acidCoA ligase 5 OS=Mus musculus GN=A
14		SwissProt	d2::RL13_MOUSE	748	28083	31	31	7	7	2.90	60S ribosomal protein L13 OS=Mus musculus GN=Rpl13 PE=
15			ef2::PDIA3_MOUSE	692	64504	40	40	15	15	2.06	
16		SwissProt	@2::CP3AB_MOUSE	686	65154	32	32	10	10	1.25	
17	1		d2::UDB17_MOUSE	677	67040	34	34	9	9	0.91	
17	2		#2::UD11_MOUSE	429	65361	19	19	7	7	0.80	
17	1		d2::UD16_MOUSE d2::EST3A_MOUSE	245	65516 67490	14	14 28	6	6	0.67	UDP-glucuronosyltransferase 1-6 OS=Mus musculus GN=Ugt Carboxylesterase 3A OS=Mus musculus GN=Ces3a PE=1 SV
10	1.	SWISSPICE	M2::EST3A_MOUSE	008	0/490	28	28	3) °	0.43	Carboxylesterase 3A OS=Plus musculus GN=Ces3a PE=1 SV

The Report Builder tab is useful when you need a table of proteins suitable for publication. Let's assume we want to drop the 'one hit wonders' and only report proteins that have significant matches to at least 2 different peptide sequences.

-		Inassign	ed (30397	2						<u>s permalink</u>			
	hits (476 proteins)												
Colum	ns: Standard (12 out of 16)												
▼Filters	(none)												
	Num. of significant sequences	•	< •										
	Protein hits												
	Member	_		5	ilter								
Export as	C Accession	- 1											
	Score	- 1											
*Eamily	Mass Num. of matches		Score	Mass	Matches	Match(sig)	Sequences	Seq(sig)	emPAI	Description			
1	Num, of significant matches		1606	28266	48	48		7	2.86				
2	Num. of sequences Num. of significant sequences		1337	61419	76	76		13	2.00				
2	Num. of unique sequences	_	552	60887	27	27	8	8	0.88				
-	Num. of significant unique sequences emPAI	ences	489 484	61128 59267	32	32		10	1.20				
2	Sequence coverage	_	339	60590	22	22	8	8	0.89				
2	pl		251	60856	13	13		4	0.37				
2	Description Fixed modifications		150	61356	9	9		4	0.37				
2	Methylthio (C) iTRAQ4plex (K)		1308	81404	55	55	21	21	2.47				
2	Z SWISSPICE ZZDF/C_PIC	USE	362	78937	21	21	8	8	0.63	Heat shock cognate 71 kDa protein OS=Mus musculus GN=Hsp.			
4	1 SwissProt 2::CYB5_MOU		1217	16817	42	42	5	5	3.08				
5	1 SwissProt #2::PDIA1_MO		1123	64694	53	53		16	2.54				
<u>6</u> Z	1 SwissProt d'2::CP1A2_MC 1 SwissProt d'2::ENPL_MOU		1054 1018	63034 103744	38 63	38 63	10	10	1.31				
8	1 SwissProt #2::RDH7_MO		1018	38455	45	45	19	19	4.07	Retinol dehydrogenase 7 OS=Mus musculus GN=Rdh7 PE=2 SV			
8	2 SwissProt 2::H17B6_MC		597	38949	23	23	7	7	1.37	17-beta-hydroxysteroid dehydrogenase type 6 OS=Mus muscul			
2	1 SwissProt #2::MGST1_M		863	18595	25	25		3	2.57	Microsomal glutathione S-transferase 1 OS=Mus musculus GN=			
10	1 SwissProt 2::RL7A_MOU		770	35860	28	28		8	1.91				
11	1 SwissProt d2::RLA0_MOU		763	37215	24	24		7	1.47	60S acidic ribosomal protein P0 OS=Mus musculus GN=Rplp0 P			
12	1 SwissProt 2::CP2AC_MC		763	61325	35	35	14	14	2.25				
12	2 SwissProt 2::CP2A5_MC		59	61696	5	5		2	0.17				
13	1 SwissProt @2::ACSL1_MC		749	86078	38	38	18	18	1.90				
13	2 SwissProt d'2::ACSL5_MC 1 SwissProt d'2::RL13_MOU		297 748	84629 28083	15	15	6	6	0.41 2.90				
19	1 SwissProt 22::RL13_MOU 1 SwissProt 22::PDIA3_MO		692	64504	40	31 40		15	2.90				
16	1 SwissProt @2::CP3AB_MC		686	65154	32	32		10	1.25	Cytochrome P450 3A11 OS=Mus musculus GN=Cyp3a11 PE=1			
17	1 SwissProt 2::UDB17 M		677		34	34		9		UDP-glucuronosyltransferase 2B17 OS=Mus musculus GN=Ugt2 *			
4										•			


We open up the filters section and add a suitable filter.

/ D iPRG2	008 Sw	issProt Mous	×								- • ×
€ →	C	54.243.1	90.62/mascot/cgi/ma	ster_resu	lts_2.pl?fi	ile=%2Fda	ta%2FF98113	9.dat_ignore	onsscorebe	elow=0.0	05;_prefertaxonomy=0;_sigthreshold=0.05;percolate=(숤 🔐 😄
	_										*
Protei	ns (4	48) Rep	ort Builder	aned (30)	397)						<u>& permalink</u>
Protei	n hi	ts (229 p	proteins)								
Colun	nere		12 Out of 10)								
			ificant sequences" >								
Printer		um. or sign	incant sequences >	- 2	\sim						
Export a	s CSI										
*Family	M	DB	Accession	Score	Mass	Matches	Match(sig)	Sequences	Sea(sia)	emPAI	Description
1		cRAP	ef1::sp TRY1_BOVIN	1606	28266	48	48	7	7	2.86	
2	1		2::CP2CT_MOUSE	1337	61419	76	76	13	13	2.00	
2	2	SwissProt	d2::CP254_MOUSE	552	60887	27	27	8	8	0.88	Cytochrome P450 2C54 OS=Mus musculus GN=Cyp2c54 PE=2 SV
2	3	SwissProt	ef2::CY250_MOUSE	489	61128	27	27	10	10	1.20	Cytochrome P450 2C50 OS=Mus musculus GN=Cyp2c50 PE=1 SV
2	4	SwissProt	12::CP2F2_MOUSE	484	59267	32	32	12	12	2.11	Cytochrome P450 2F2 OS=Mus musculus GN=Cyp2f2 PE=2 SV=1
2	5	SwissProt	ef2::CP237_MOUSE	339	60590	22	22	8	8	0.89	Cytochrome P450 2C37 OS=Mus musculus GN=Cyp2c37 PE=2 SV
2	6	SwissProt	@2::CP239_MOUSE	251	60856	13	13	4	4	0.37	Cytochrome P450 2C39 OS=Mus musculus GN=Cyp2c39 PE=2 SV
2	7	SwissProt	d2::CP238_MOUSE	150	61356	9	9	4	4	0.37	Cytochrome P450 2C38 OS=Mus musculus GN=Cyp2c38 PE=2 SV
2	1	SwissProt	@2::GRP78_MOUSE	1308	81404	55	55	21	21	2.47	78 kDa glucose-regulated protein OS=Mus musculus GN=Hspa5 P
2	2	SwissProt	d2::HSP7C_MOUSE	362	78937	21	21	8	8	0.63	
4	1	SwissProt	ef2::CYB5_MOUSE	1217	16817	42	42	5	5	3.08	
5	1	SwissProt	d2::PDIA1_MOUSE	1123	64694	53	53	16	16	2.54	
2	1	SwissProt	d2::CP1A2_MOUSE	1054	63034	38	38	10	10	1.31	
Z	1	SwissProt	@2::ENPL_MOUSE	1018	103744	63	63	19	19	1.53	
8	1	SwissProt	d2::RDH7_MOUSE	1005	38455	45	45	12	12	4.07	
8	2	SwissProt	2::H17B6_MOUSE	597	38949 18595	23	23	3		1.37	17-beta-hydroxysteroid dehydrogenase type 6 OS=Mus musculus
2 10	1	SwissProt SwissProt	d2::MGST1_MOUSE	863	35860	25	25 28	3	3	2.57	Microsomal glutathione S-transferase 1 OS=Mus musculus GN=Mg 60S ribosomal protein L7a OS=Mus musculus GN=Rpl7a PE=2 SV
11	1	SwissProt	2::RLA0_MOUSE	763	37215	20	24	7	7	1.91	605 acidic ribosomal protein PO OS=Mus musculus GN=RpIp0 PE=
12	1	SwissProt	2::CP2AC_MOUSE	763	61325	35	35	14	14	2.25	
12	2		d2::CP2A5_MOUSE	59	61696	5	5	2	2	0.17	
13	1		d2::ACSL1_MOUSE	749	86078	38	38	18	18	1.90	
13	2		2::ACSL5_MOUSE	297	84629	15	15	6	6	0.41	
14	1	SwissProt	e2::RL13_MOUSE	748	28083	31	31	7	7	2.90	
15	1	SwissProt	#2::PDIA3_MOUSE	692	64504	40	40	15	15	2.06	
16	1	SwissProt	d2::CP3AB_MOUSE	686	65154	32	32	10	10	1.25	Cytochrome P450 3A11 OS=Mus musculus GN=Cyp3a11 PE=1 SV
17	1	SwissProt	m2::UDB17_MOUSE	677	67040	34	34	9	9	0.91	UDP-glucuronosyltransferase 2B17 OS=Mus musculus GN=Ugt2b1
17	2	SwissProt		429	65361	19	19	7	7	0.80	UDP-glucuronosyltransferase 1-1 OS=Mus musculus GN=Ugt1a1 F
17	3		d2::UD16_MOUSE	245	65516	14	14	6	6	0.67	UDP-glucuronosyltransferase 1-6 OS=Mus musculus GN=Ugt1a6 F
18	1	SwissProt	d2::EST3A_MOUSE	668	67490	28	28	5	5	0.43	Carboxylesterase 3A OS=Mus musculus GN=Ces3a PE=1 SV=2 🔹
4 (•
т		: Verj	/ Large Se	arc	hes			© 2007-202	3 Matrix	Scien	

Only proteins with significant matches to at least 2 sequences remain. The filtering is very flexible, with lots of useful terms.

Protei	ns (4	48) Rep	oort Builder Unass	igned (3	0397)						<u>& permalink</u>
Protei	n hi	its (228	proteins)								
Colum	ns:	Standard (12 out of 16)								
Filters	: (N	OT(Databa	se is cRAP) AND "Nu	m. of si	gnificant	sequences	s" >= 2)				
		_			,						
Export a	s CS	V									
*Eamily	M	DB	Accession	Score	Mass	Matches	Match(sig)	Sequences	Seq(sig)	emPAI	Description
2	1	SwissProt	2::CP2CT_MOUSE	1337	61419	76	76	13	13	2.00	Cytochrome P450 2C29 OS=Mus musculus GN=Cyp2c29 PE=1 SV
2		SwissProt	ef2::CP254_MOUSE	552	60887	27	27	8	8	0.88	Cytochrome P450 2C54 OS=Mus musculus GN=Cyp2c54 PE=2 SN
2	3	SwissProt	12::CY250_MOUSE	489	61128	27	27	10	10	1.20	Cytochrome P450 2C50 OS=Mus musculus GN=Cyp2c50 PE=1 SV
2	4	SwissProt		484	59267	32	32	12	12	2.11	-,
2	5		d2::CP237_MOUSE	339	60590	22	22	8	8	0.89	-,
2		SwissProt	12::CP239_MOUSE	251	60856	13	13	4	4	0.37	
2	7	SwissProt	ef2::CP238_MOUSE	150	61356	9	9	4	4	0.37	
3	1		ef2::GRP78_MOUSE	1308	81404	55	55	21	21	2.47	
3	2	SwissProt	ef2::HSP7C_MOUSE	362	78937	21	21	8	8	0.63	
4	1		ef2::CYB5_MOUSE	1217	16817	42	42	5	5	3.08	-,
5	1	SwissProt	ef2::PDIA1_MOUSE	1123	64694	53	53	16	16	2.54	
6 Z	1	SwissProt	#2::CP1A2_MOUSE	1054	63034	38 63	38	10	10	1.31	
8	1	SwissProt SwissProt	2::ENPL_MOUSE	1018	103744 38455	45	45	19	19	1.53	
8		SwissProt	d2::RDH7_MOUSE d2::H17B6_MOUSE	597	38455	45	45	12	12	4.07	
2		SwissProt	22::MGST1_MOUSE	863	18595	23	23	3	3	2.57	
2			2::RL7A_MOUSE	770	35860	23	23	3	8	1.91	
11	1		2::RLA0_MOUSE	763	37215	20	20	7	7	1.91	
12			d2::CP2AC_MOUSE	763	61325	35	35	14	14	2.25	
12	2		2::CP2A5_MOUSE	59	61696	5	5	2	2	0.17	
13	1			749	86078	38	38	18	18	1.90	
13	2	SwissProt		297	84629	15	15	6	6	0.41	
14		SwissProt	2::RL13_MOUSE	748	28083	31	31	7	7	2.90	
15		SwissProt	2::PDIA3_MOUSE	692	64504	40	40	15	15	2.06	
16		SwissProt	12::CP3AB_MOUSE	686	65154	32	32	10	10	1.25	
17		SwissProt	d2::UDB17_MOUSE	677	67040	34	34	9	9	0.91	UDP-glucuronosyltransferase 2B17 OS=Mus musculus GN=Ugt2b
17	2	SwissProt	m2::UD11_MOUSE	429	65361	19	19	7	7	0.80	UDP-glucuronosyltransferase 1-1 OS=Mus musculus GN=Ugt1a1
17	3	SwissProt	2::UD16_MOUSE	245	65516	14	14	6	6	0.67	7 UDP-glucuronosyltransferase 1-6 OS=Mus musculus GN=Ugt1a6
18	1	SwissProt	d2::EST3A_MOUSE	668	67490	28	28	5	5	0.43	Carboxylesterase 3A OS=Mus musculus GN=Ces3a PE=1 SV=2
19	1	SwissProt	@2::RL4_MOUSE	650	55568	34	34	11	11	1.59	60S ribosomal protein L4 OS=Mus musculus GN=Rpl4 PE=1 SV=
4											

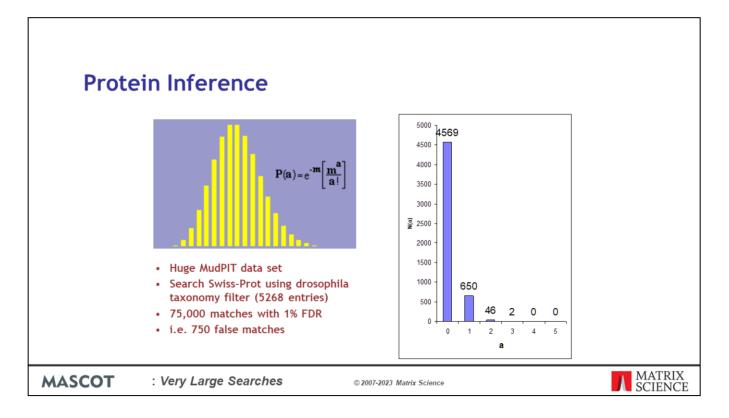
Another thing that you could easily do would be to exclude proteins from the contaminants database.

The columns section of Report Manager allows you to choose which columns to include and, if required, change their order.

	A28	• B	= Filters: C	D	E	F	G	н	1	J	К	
25		e All entrie		D	E	F	G	н		J	K	-
	Show I		5		-	-						
27	Gliowi	110		-	-	-						
	Filters	Num of	significant sequ	ences >= 2	-	-						
29		-	-grime and a coda		-							
		y Member	Database	Accession	n Score	Mass	Num. of	Num. of	Num. of	Num. of	emPAI	Description
							matches	significant	sequences			
30								matches		sequences		
31		1	iPRG_2012	P00925	2140	46942		100	53	43	44.71	Enolase 2 OS=Saccharomyces cere
32		2	iPRG_2012	P00924	1059	46844		46	35	27	7.47	Enolase 1 OS=Saccharomyces cere
33		1	iPRG_2012	P00549	1933	54909		87	56	43	18.28	Pyruvate kinase 1 OS=Saccharomyc
34		1	iPRG_2012	P40150	1613	66668	105	66	66	45	11.76	Heat shock protein SSB2 OS=Sacch
35		2	iPRG_2012	P11484	1590	66732		65	64	44	11.12	Heat shock protein SSB1 OS=Sacch
36		1	iPRG_2012	P10592	1591	69599	107	57	52	32	5.01	Heat shock protein SSA2 OS=Sacch
37		2	iPRG_2012	P10591	1161	69786		44	48	26	3.02	Heat shock protein SSA1 OS=Sacch
38		3	iPRG_2012	P16474	233	74479		8	17	6	0.32	78 kDa glucose-regulated protein hor
39		1	iPRG_2012	P00330	1453	37282		51	32	25	13.48	Alcohol dehydrogenase 1 OS=Sacch
40		2	iPRG_2012	P07246	101	40743		5	7	3	0.29	Alcohol dehydrogenase 3, mitochono
41		1	iPRG_2012	P00560	1382	44768		58	54	33	12.75	Phosphoglycerate kinase OS=Sacch
42		1	iPRG_2012	P00359	1361	35838		54	31	25	12.29	Glyceraldehyde-3-phosphate dehydro
43		2	iPRG_2012	P00358	1242	35938		48	29	24	9.89	Glyceraldehyde-3-phosphate dehydro
44		3	iPRG_2012 iPRG_2012	P00360 P04406	505 41	35842 36201		20	14	12	2.47	Glyceraldehyde-3-phosphate dehydro
45		4	iPRG_2012	P04406 P06169	1289	61685		41	4 28	2 26	0.21	Glyceraldehyde-3-phosphate dehydro Pyruvate decarboxylase isozyme 1 C
40		1	iPRG_2012	P00109	1031	27592		44	32	25	34.97	Phosphoglycerate mutase 1 OS=Sac
	10	1	iPRG_2012	P00350	1015	15881		38	16	13	22.71	40S ribosomal protein S19-B OS=Sa
	10	2	iPRG_2012	P07201	1015	15907		38	16	13	22.71	40S ribosomal protein S19-D OS=Sa 40S ribosomal protein S19-A OS=Sa
	11	1	contaminants	P00761	922	25078		27	7	6	2.89	SWISS-PROT:P00761[TRYP_PIG Tr
	12	1	iPRG_2012	P32324	784	93686		33	33	23	1.44	Elongation factor 2 OS=Saccharomy
	13	1	iPRG_2012	P16521	771	116727		33	47	30	1.52	Elongation factor 3A OS=Saccharom
	14	1	iPRG 2012	P05319	765	10739		29	10	9	95.65	60S acidic ribosomal protein P2-alph
	15	1	iPRG 2012	Q03048	721	15948		23	17	14	17.82	Cofilin OS=Saccharomyces cerevisia
55		1	iPRG_2012	P0C0V8	719	9797		29	15	12	207.43	40S ribosomal protein S21-A OS=Sa
	16	2	iPRG 2012	Q3E754	694		41	28	15	12	148.28	40S ribosomal protein S21-B OS=Sa
177		" data	20120501_F0	01467 dat	.77				10 14	1	10.11	
Dt	aw - R	Autor	Shapes • 🔪 🔌		4	Ø · -	<u>2 · ▲</u> · ≡		•			
Re	ady											

Once the list is filtered and the columns arranged as required, there is a button to export the table as CSV, which can be pasted into Excel and formatted to create a suitable figure for dropping into a publication.

Larg	e search results in 2.2 and earlier ??? Select Summary Report	
	Format As Select Summary (protein fits) V Help Help	
	Significance threshold p< 0.05 Max. number of hits AUTO Show Percolator scores	נ
	Standard scoring O MudPIT scoring O Display non-significant matches D Show sub-sets 0	
	Show pop-ups 💿 Suppress pop-ups 🔿 Require bold red 🗆	
	Preferred taxonomy All entries	
MASCOT	: Very Large Searches © 2007-2023 Matrix Science	MATRIX SCIENCE


The older Peptide Summary and Select summary (Proteins) reports have an options choose between Standard scoring and MudPIT scoring. The standard protein family report always uses MudPIT scoring. What do we mean by Standard scoring and MudPIT scoring?

Prote	in Scores fo	r MS/M	S Se	earo	:he	S							
	Standard proteir												
	 the sum of the 												
	 excluding the parentheses 	e scores for d	uplicat	te ma	tches	, whi	ch are shown in						
	 correction to reduce the contribution of low-scoring random 												
	matches												
	342. <u>2::IPI00023283</u>	Mass: 3832803 Sc			: 51(0)	Sequence	s: 48(0)						
	Query Observed	<pre>me_Symbol=TTN Isoform Mr(expt) Mr(calc</pre>			Expect	Pank Uni	que Peptide						
	28 359.7341			0 7	4.2	5	U R.LFAIVR.G						
	209 394.2371			0 8	13		U K.LTIADVR.A						
	334 411.2073						U K.TDSGLYR.C						
	357 413.2642		5 0.48	1 12	1.1		U K.RFLTLR.K						
	715 450.7365			0 10	2.9		U K.IVDVSSDR.C						
	740 451.7681	901.5217 901.523	3 -1.72	0 3	24		U R.VTLVDVTR.N						
	840 459.2484	916.4821 916.476	7 5.98	0 2	29	2	U K.GVEFNVPR.L						
	844 459.7299	917.4452 917.445	4 -0.24	0 4	15	6	U K.ELEETAAR.M						
	1029 473.2757	944.5368 944.533	1 3.97	1 3	21	3	U R.EPPSFIKK.I						
	1058 475.7505	949.4864 949.486	9 -0.47	0 4	22	5	U R.SSVSLSWGK.P						
	1066 476.2790	950.5433 950.542	5 0.94	0 1	23	4	W R.PLTDLQVR.E						
MASCOT	: Very Large Searc	hes	© 200	17 -2 023 M	atrix Scier	nce		MATRIX SCIENCE					

Г

With standard peptide summary scoring, the protein score is essentially the sum of the ions scores of all the peptides assigned to the protein. Where there are duplicate matches to the same peptide, the highest scoring match is used. A correction is applied based on the number of candidate peptides that were tested. This correction is very small unless it is a very large protein, like here, or a no-enzyme search.

Despite this correction, as this example shows, when we have many low scoring matches assigned to the same protein, we can still get a high protein score, even though none of the individual peptide matches are significant.

A protein with matches to just a single peptide sequence is commonly referred to as a "one-hit wonder" and is often treated as suspect. This is actually a slight oversimplification. In a search with a large number of spectra and a small database, even though the peptide false discovery rate is low, a protein can pick up multiple false matches by chance. This is easily calculated using a Poisson Distribution, where m is the average number of false matches per protein. In this example, m is 750/5268, and we would expect 650 database entries to be one-hit wonders. However, 46 entries will pick up two false matches and 2 entries will pick up three, which could mean we report 48 false proteins.

The problem isn't limited to large searches. It is the ratio between the number of spectra and the number of entries in the database that matters. So, a small search against a small database can give similar numbers.

Protein Sco	Protein Scores for MS/MS Searches												
MudP	IT protein	score											
• 1		ne excess (ver	the identity or						
Plus 1 x the average threshold													
1249	1249. 2::1P100023283 Mass: 3832803 Score: 0 Matches: 51(0) Sequences: 48(0)												
	Tax_Id=9606 Gene_Sym												
		(expt) Mr(calc) 7.4537 717.4537		Score Ex	quect Rank U 4.2 5	Inique	Peptide R.LFAIVR.G						
		7.4537 717.4537 6.4596 786.4599		8	4.2 5	U U	R.LFAIVR.G K.LTIADVR.A						
		0.4000 820.3954		3	15 4	U	K. TDSGLYR. C						
		4.5139 824.5135		12	1.1 5	U	K.RFLTLR.K						
		9.4584 899.4588		10	2.9 2	U	K.IVDVSSDR.C						
		1.5217 901.5233		3	24 3	U	R.VTLVDVTR.N						
	and the second se	6.4821 916.4767		2	29 2	U	K. GVEFNVPR. L						
		7.4452 917.4454	-0.24 0	4	15 6	U	K.ELEETAAR.M						
	1029 473.2757 94	4.5368 944.5331	3.97 1	3	21 3	U	R.EPPSFIKK.I						
	1058 475.7505 94	9.4864 949.4869	-0.47 0	4	22 5	U	R.SSVSLSWGK.P						
	1066 476.2790 95	0.5433 950.5425	0.94 0	1	23 4	U	R.PLTDLQV <u>R</u> .E						
MASCOT : Very L	arge Searche.	es	© 2007	-2023 Mati	rix Science		MATRIX SCIENCE						

To avoid this problem, we use MudPIT protein scoring, in which the score for each peptide match is not its absolute score, but the amount that it is above the threshold. Therefore, matches with a score below the threshold do not contribute to the score. The MudPIT protein score is the sum of the score excess over threshold for each of the matching peptides plus one times the average threshold. For each peptide, the "threshold" is the homology threshold if it exists, otherwise it is the identity threshold.

So, even though a large protein like titin may pick up several random matches, with MudPIT scoring, the protein score is zero, so you don't see it listed in the report unless you specify a huge number of protein hits, as was done here to capture this screen shot.

By default, MudPIT protein scoring is used when the ratio between the number of queries and the number of database entries, (after any taxonomy filter), exceeds 0.001 and always used on the Protein Family Summary. This default switching point can be moved by changing the value of MudpitSwitch in mascot.dat. You can also switch between the two scoring methods by using the format controls at the top of the report.

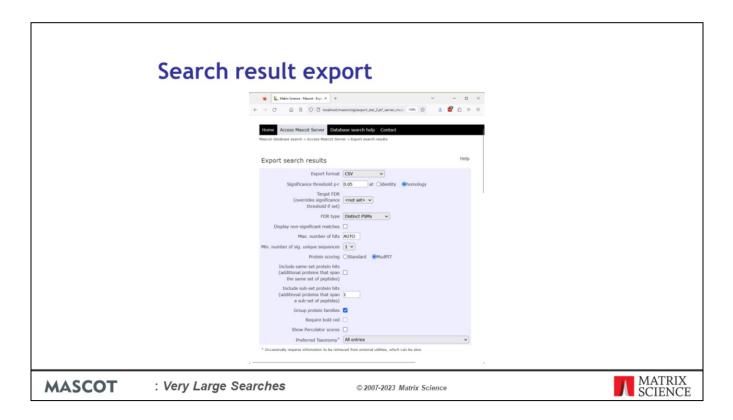
	Search result export	
	V V V V V V V V V V V V V V V V V	
	show Produce scores Picenalizity Picenalizity Protein families 1-10 (out of 448) 10 yer page 1 (2) (4) (5) - 48 (core at a core at a c	
МАЅСОТ	: Very Large Searches © 2007-2023 Matrix Science	MATRIX SCIENCE

At some stage, it is likely that you will want to export the search results to another application or a relational database. If you want to write your own code, we provide a free library called Mascot Parser that provides a clean, object oriented programming interface to the result file. The supported languages are Python, C#, C++, Java, and Perl.

Mascot also includes a flexible export utility.

If you want the XML format, you probably know that this is what you want. If you've no idea what XML is, chances are you don't want it.

Choose CSV if you want to export to Excel - I'll show an example in a moment.


Choose pepXML, v1.8, if you want to export to Protein Prophet from ISB.

mzIdentML and mzTab are the standard formats from PSI for search result interchange. Mascot provides a very full implementation of mzIdentML and this is the one to choose if you are writing new application software that will use Mascot results.

DTASelect, v1.9, is the tab separated format used by David Tabb's DTASelect program.

The Mascot DAT file is the raw result file. If you need the result file for some reason, and don't have FTP or SCP access to your Mascot server, this is a convenient way to get the file.

MGF peak list is useful when you have the search result but can't find the peak list.

If you arrive here from one of the older reports, to begin with, you may need to select the required output format. Different formats have different options further down the page.

Sea	r <mark>ch resu</mark> l	lt export			
	L Matrix Science - Mascot - Expor × +			- 0	×
	< → C @ 08	edectus/mascot/ogi/export_dat_2.pl	11	m ☆ 土 〓 >>	et
		Correct Reset Column cauch heig Contact Austin dataset assets in Austin dataset dataset Column cauch heig Contact Courting or mady to be started. Courting Courting	Search this site Q		
	_				
MASCOT	: Very Lar	rge Searches	© 2007-2023 Matrix Science		MATRIX SCIENCE

To export to Excel, simply select CSV as the format, and click on the Export Search Results button at the bottom of the page. In recent versions of Mascot, the report is prepared and then a download button is displayed. In older versions, the download would start immediately. One the download is finished, you can open it into Excel.

Search r	esult export
	Addee Bettikee P Startbede P Startbede P Startbede P Startbede P Startbedee P Startbede
	File Home Isset Page Layout Formulas Data Review View Help Power First Formula Editor
	2 · ↑ λ case - 11 - λ κ = = = ⊕ + δ tenes - Ε Ε Ε Ε Ε Ε Ε Ε Ε Ε Ε Ε Ε Ε Ε Ε Ε Ε
	• 😽 1 ½ • Ш • 22 • Δ • [5 8 1 2] Ш • 5 • 76 7 12 22 (underling " hitler 2015) * ∰ format • \$\vec{\phi}\$ Fare Sect. Data
	Unda Opbesit G Fait G Algeneet G Number G Syles Cells Editing Analysis *
	⊕ Spelling gl_SortAssZ gl_SortZssA v
	52 Fragment Mass Tolerand Da
	53 Mass values Monoisotopic
	Isi Instrument type ISI-TRAP Isi Instrument of type arear mode 0
	35 Indige and mode 0 36 Decoy database also see 1
	57
	10 Format parameters
	60 Significance threshold 0.05
	61 Max.numberofihits 0
	Ou MudPT protein soor 1 Out of the second of the
	In terms score could a same set probe 0
	65 Include sub-set proteins 1
	6(i) Include unsigned 0 (ii) Include unsigned 0 (ii) Include unsigned 0
	67 Requestion red 0 66 Use handlage theorem (
	69 Group protein families 1
	20 Re-score using Percelatr, 0
	7) Bow duplicate paptide 1 70 71
	77 Protein hits
	24
	[7] ptot [htt] root _ptot _
	70 1 1 1500 [177:0] [171:0] 1060 24200 10 10 7 7 1412 1 1 1 1072207 1355.06 2455 4 4 4 7 7 1431 1 1 1 1072207 1355.06 2655 1
	78 1 1 1:mp/1Wr.up/1Wru_0/1Wru_0/1006 38266 48 48 7 7 14332 1 1 1 677.3013 1353.788 2 1353.688 0.1004
	79 1 1.5529 [TRY:1] 1606 23266 44 47 7 14317 1 1 1673402 1553.688 0.1823 10 1 1.5027 [TRY:1] 166 23266 44 47 7 14318 1 1 1 1673441 2153.688 0.1823
	10 1 1 1.00[177:0]177:0]177:0] 107:0 20 40 40 40 7 7 24338 1 1 1 1 072941 1353.079 2 1353.08 0.38 11 1 1.00[177:0]177:0]177:0] 107:0 40 2304 40 40 7 7 24339 1 1 1 0729471 1353.01 2 1353.08 0.394
	12 1 11:sp[TRY:4p]TRY1_6 1606 28266 48 48 7 7 14345 1 1 1677.9786 1353.548 2 1353.648 0.2551
	13 1 1.5.502 [T07:3] 1606 23266 44 47 7 7.1437 1 1 673405 153.548 0.2229 64 1 1.5.502 [T07:3] 1073.61 1.5.133.648 0.2229
	04 1 11200[107:00]1071_0 1006 24206 40 44 7 7 24550 1 1 10502005 1353755 2 155368 03002 15 1 11200[107:00]1071_0 1066 24266 48 44 7 7 24557 1 1 1672.04 135563 2 1355.848 03609
	2/2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	· ////////////////////////////////////
	Ready Discussibility Unamitable 🔠 🔟 🕐

Much easier and safer than "screen scraping".

ſ

Search	Image: Construction Image: Constructi	<pre>- 0 X ttp://www.matrixecience.com/malas/school_mearch_results_1 ttp://www.matrixecience.com/malas/school_mearch_results_1 1</pre>	
	ep_calc_mr		
MASCOT	: Very Large Searches	© 2007-2023 Matrix Science	MATRIX SCIENCE

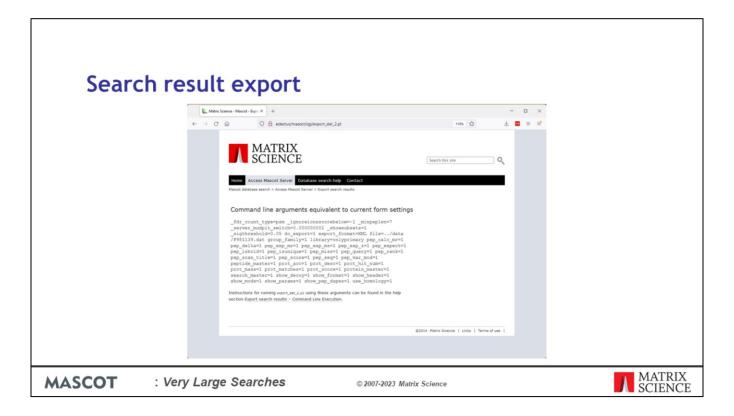
For those of you into XML, here is a sample XML file. The schema is available from our web site or your local Mascot installation.

Please read the help for details.

the state of the s												
Search res	ult	exi	port									
_		_										
	icrosoft Acces											4
EM.			Records Iools Windo							importing xml sche	mas •	
	• 🖬 😫 🛎		B B 10 8 213	计改图公	94 1	• w 🗇 泊	1. 2.					
	B											
	🖓 Open 📈 (Design Im New 2	X an 正臣 m									
(m	peptide : Tabl	lo										1
	pep exp mz	pep exp mr	pep_ pep_calc_mr	pep_delta	pep	pep_score	pep_expect	DPD	pep		pep ·	1
	417.1822	832.3498	2 832.3827	-0.0329		45.35	0.1				K	1
	451.2499	900.4853	2 900.5280	-0.0427	0	51.95	0.025	1	K	LSDGVAVLK	V	1
	456.7806	911.5467	2 911.5803	-0.0337		59	0.0041	1			A	1
	480.7447	959.4748	2 959.5036	-0.0288		45.33	0.11	1			A	1
	595.7855	1189.5565	2 1189.6012	-0.0447		56.55	0.0068	1	K		K	1
	603.7720 608.3099	1205.5294 1214.6052	2 1205.5961 2 1214.6506	-0.0668		50.13	0.027	1	K		ĸ	1
	617.2857	1214.6052 1232.5569	2 1214.6506 2 1232.5884	-0.0454		73.21 80.63	0.00015 2.7e-05	1	K		ĸ	1
	672.8375	1343.6605	2 1343.7085	-0.0315		64.38	0.001				÷	1
	714.8884	1427.7623	2 1427.8057	-0.0434		64.52	0.00086	1	R		ĸ	1
	714.8938	1427.7730	2 1427.8057	-0.0327		72.61	0.00013	1	R		ĸ	1
	722.8849	1443.7552	2 1443.8006	-0.0454	0	72.71	0.00014	1	R	GVMLAVDAVIAELK	К	1
	722.8934	1443.7722	2 1443.8006	-0.0284		70.08	0.00025	1			К	1
	752.8643	1503.7141	2 1503.7490	-0.0349		89.56	2.7e-06	1		TENDELENEONIN	F	1
	760.8461	1519.6777	2 1519.7439	-0.0662		84.43	8.9e-06	1		TENDEREGUE	F	1
	640.3281	1917.9625	3 1918.0636 2 1918.0636	-0.1010		101.5	1.3e-07	1	K		K K	<i>.</i>
	960.0327 1019.5106	1918.0509 2037.0067	2 1918.0636 2 2037.0153	-0.0127		87.34 52.42	3.2e-06 0.01	1	R	ISSIQSIVPALEIANAHR IQEIIEQLDVTTSEYEK	E	<i>.</i>
	1019.5106	2112.0929	2 2112.1322	-0.0393		115.78	4.6e-09	1	R	ALMLQGVDLLADAVAVTMGPK	G	1
	1065.0399	2128.0653	2 2128.1271	-0.0618		68.73	0.00022	1	R	ALMLQGVDLLADAVAVTMGPK		1
	1073.0477	2144.0809	2 2144.1220	-0.0411		69.64	0.00018	1	R	ALMLQGVDLLADAVAVTMGPK		1
	789.1062	2364.2968	3 2364.3263	-0.0296	0	55.53	0.0038	1	R	KPLVIAEDVDGEALSTLVLNR	L	1
	1183.1570	2364.2994	2 2364.3263	-0.0269		65.46	0.00038	1	R	KPLVIAEDVDGEALSTLVLNR	L	1
	789.1094	2364.3063	3 2364.3263	-0.0200		94.59	4.5e-07	1	R	KPLVIAEDVDGEALSTLVLNR	L _1	1
	cord: 14 4 1	40	2 3491 3041	0 0103	0	17 53	0.02	1	D	TALLDAAGVAQUITTAE\AA/TEI		1
	1				-			-	-		-	4

XML is ideal for transferring the results to a relational database. Even Microsoft Access can open the XML file directly into database tables

Search r	esult e	Mascot database search: (×	-						- 0 1	
	PHURov		Database Deport search re I result arch results to very, the file to hoosing Europer ormat 4a, th a the command SV these two for be opened in it, the result is eport. For search the protein lis or a Protein li	whe ts b be exported format is chosen t Search Resuld didition, the uil line. mats is identify spreadsheets oformation is another south t and associat annily report. ot HTML, report	in a variety en and cust uits in the for tility can be such as Mi structured i at include N at include N at include N at include N at include N at include N at include N structured i to create a r, the setti Same- sets checked	comised usin ormat control executed b ideal for imp crosoft Exce in a very sin 45/M5 data, matches in in export the ngs of the fo Sub-sets 1 As format controls	g a web is of a y scripts, orting into a L lilar way to you can a similar way it contains	Statements and Q Lappedn as ma, same dath same as a same	Or Constraints of the second seco	
MASCOT : Ve	ery Large S	earches			C	2007-2	2023 Mai	trix Science		MATRIX SCIENCE


There is a very detailed help page for all of this.

Search	result e	xport				
	L. Matrix Science - Manort - Expo × +				- 0 ×	
	← → C @ O 8 edectus/mascat/spileport_dat_2pi			105 \$	± 🔳 >> 🚅	
		Masserer(bo) 6 Stort Brid Rander of searcharger 6 Store 7 Nonskyr breahald Store breahald Stopartistiv store Stopartistiv stopartistiv store Stopartistiv stopartistiv st				
		Show duploade people				
		Show command line arguments Export search results	62014 Matrix Scence Links Terms of u			
MASCOT :	Very Large Se	earches ©.	2007-2023 Matrix Science			MATRIX SCIENCE

The help describes how the export script can be called from the command line or a shell prompt, as part of an automated pipeline.

I won't go into any detail here, but this means that it is possible to set up a script that will, for example, automatically convert all of your Mascot results to XML files.

Figuring out the command line arguments from the help can be tricky so, there is a function to display the command line corresponding to the selected options.

By the way, don't delete the original result files after exporting them or your won't be able to view the standard Mascot reports in a browser.